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AQ1

Abstract. The purpose of this work is to leverage two types of sensors,
motion and optical, to create a continuous authentication system for
smart devices such as smartwatches. The proposed solution is based on an
Android application that uses the accelerometer and gyroscope to mea-
sure movements and to classify them in normal and session-endangering
classes. If suspicious movements are identified, then the app enacts a
second decision level and activates the heart or body detection sensor
to check if the watch is actually still on the user’s wrist. The two-level
architecture tries to optimize energy consumption. To validate our sys-
tem, various measurements were carried out with the aim of mapping
the typical gestures of users who wear a smartwatch. The goal is there-
fore to be able to recognize certain movements, limit checks involving
the optical sensors that are extremely energy hungry, and, thus, achieve
a better battery recharge cycle.

Keywords: Continuous authentication · Smartwatch · Sensors

1 Introduction

A true experience of Ambient Intelligence does benefit from the availability of
wearable devices forming a Body Area Network (BAN), both because these
devices bring all needed information to the final users while moving around in
the environment, and mainly because they can automatically perform some finer-
grained tasks relieving users from direct intervention in boring activities. The
plethora of tasks that can be imagined as being of no interest and should become
completely transparent to the users can be roughly classified as harmless and
risky categories; the latter ones include all those activities that are strictly tied
to the identity or role of the final user. Technical evolution from the hardware
side continuously shows oscillatory behavior, proposing solutions either made of
many simple and single-task oriented devices or involving a few multi-purpose
and more powerful devices. These two scenarios pose different problems when
considering security and energy-related issues. The former scenario has a wider
set of potential point-of-failure due to the number of nodes in the BAN, however,
the probability of energy fault per task decreases; the latter can provide better
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support security measures but requires cleverer energy management. In order
to access sensitive data or features on a device or network, a user identity first
needs to be verified through an authentication mechanism. The purpose of this
procedure is to protect sensitive information from any unauthorized access by
malicious parties. There are different authentication techniques that depend on
three types of recognition factors:

– knowledge factor, that is linked to something that only the user knows (eg.
password, PIN codes, pattern lock)

– ownership factor, that is linked to something that only the user owns (e.g.
electronic card, token, digital certificates)

– inherence factor, or linked to something intrinsic to the user himself (e.g.
biometric parameters)

Authentication is considered strong if it takes into account at least two of the fac-
tors just mentioned: we speak of multi-factor authentication. An authentication
mechanism can also be classified according to its duration. A secure solution is
that of “continuous authentication”. Such a mechanism occurs continuously over
time. In particular, after the first authentication event and for the entire dura-
tion of the session, some parameters are monitored in order to confirm or deny
the identity of the user. If the monitored values do not meet the expected values,
the session is terminated. The parameters just mentioned are generally inher-
ence factors such as biometric traits that uniquely identify who is using a device.
In this way, the user only has to worry about logging in, while the subsequent
part of authentication validation can be carried out in the background without
requiring any active intervention. In recent years the smartwatch has undergone
an exponential spread, becoming a device used by hundreds of millions of people.
The features made available to the user have increased continuously, making it
an increasingly useful tool in daily use. At the same time, the amount of sensitive
data to manage and keep safe has also increased, such as passwords and bank
details for payments via NFC. In this context, security has played a fundamental
role both for the user and for smartwatch manufacturers. To contain possible
vulnerabilities, various authentication methods based on passwords, PINs or pat-
tern locks have been implemented. However, the usefulness of these techniques
proved to be limited and not powerful enough to protect the user in the event
of a side-channel attack and shoulder-surfing.

In this paper, a possible solution for the realization of a continuous authenti-
cation system on a smartwatch is studied. More in detail, the goal is to develop
software that can monitor data from the accelerometer, gyroscope and heart
rate sensor and, based on the results, decide whether the authentication session
should remain open or not. The smartwatch must therefore be able to under-
stand if there is a risk that the owner has been robbed and, in this case, it will
have to automatically block the session.

2 State of the Art

Over the years, various solutions have been proposed to perform authentication
and ensure continuity of use by a user. Zhang et al. [1] use behavioral biometrics
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Continuous Authentication on a Smartwatch 3

for a lightweight authentication by analyzing tapping rhythms of users. Based
on the DBSCAN clustering algorithm, they perform classification first seeking
core objects and then leveraging them to get the correct association with true
users. In [2] a new method is proposed as a challenge-response scheme, in which
the challenge is a random sequence of multiple vibration types that are already
built into current smartwatches. Based on the fact that vibration is absorbed,
reflected, and propagated differently according to the physical structure of each
human body, the responses to vibrations are measured by the default gyroscope
and accelerometer sensors in smartwatches. Lu et al. [3] have experimented with
a technique capable of allowing authentication by recognizing the movements
performed by a user during the phase of entering a code on the smartwatch.
The algorithm developed, VeriNet, uses the data detected by the accelerometer
and gyroscope to distinguish a user from a possible impostor and, at the same
time, to recognize and authenticate the different passwords/pins entered by a
user. In [4] the authors suggest to use data from the sensors of both the user’s
smartwatch and the user’s smartphone to achieve identification accuracy. Guerar
et al. [5] have proposed a technique, called 2GesturePIN, which allows you to
authenticate yourself on the smartwatch by using, depending on the device used,
the rotating crown or the side wheel. These two tools, through their rotation,
are used to enter the digits of a PIN code. The system is structured so that
there are two circumferences on the screen, the first corresponding to the PIN
and the second relating to the rotation of the crown or wheel. The purpose of
the user is therefore to identify himself by matching the two circumferences. All
this is done without having to interact with the watch’s touchscreen, thus foiling
any attempts to steal the PIN by tracking sensor data and making shoulder
surfing useless. Another similar technique is that of the CirclePIN [6], which
uses a random map to associate a color to each of the digits from 0 to 9 that
make up a PIN. On the screen, the colors are distributed on a circumference and
the user, using the crown or the wheel, must select the right one based on his
PIN. In addition to the advantages in terms of safety, these techniques however
present some criticalities that limit their actual implementation. VeriNet, despite
claiming to exceed existing approaches by 3–4 times, is not infallible and can
therefore misinterpret some of the data processed. On the contrary, 2GesturePIN
and CirclePIN, being forms of PIN entered by the user, cannot be wrong: they
recognize or reject the user. Their main problem is instead linked to ease of use,
limited by the fact that the user must necessarily interact with the crown or
wheel to complete the login. Another technique aimed at foiling shoulder surfing
attacks is described in [7] where the authors suggest to mix fake gestures inside
the authentication sequence in a way that is similar to what originally suggested
for smartphones in [8].

3 Our Solution

In this section we present an app for Wear OS that can guarantee continuous
authentication using accelerometer, gyroscope, heartbeat , and body recognition
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sensors. The accelerometer and gyroscope data are used to identify suspicious
movements that may jeopardize the security of the watch. Heart sensor and body
recognition instead provide, in two different ways, data relating to whether the
smartwatch is still on the wrist. In particular, the latter two sensors are used to
create two different versions of the same application: the first, the one with a
heart sensor, safer but also more energy-intensive than the counterpart with a
body recognition sensor.

In the case of the Fossil Gen 5, the accelerometer and gyroscope are sealed
inside the same component, the LSM6DSO manufactured by STMicroelectron-
ics. This system is designed to operate at low powers and is therefore ideal for
devices such as smartwatches. The accelerometer is able to measure accelerations
between +/− 16 g, while the gyroscope detects angular velocities in the range
+/− 2000 rad/s.

Heart and body recognition sensors only work if the user is actually wearing
the smartwatch. They use an optical sensor positioned on the back of the device
and placed directly in contact with the skin. The technology used is called “pho-
toplethysmography” and consists in the use of green and red LEDs combined
with light-sensitive photodiodes, or sensors capable of measuring the wavelength
of an electromagnetic wave. The operation is simple and is based on the fact
that the blood reflects the red light and absorbs the green one. The optical sen-
sor then activates the LEDs hundreds of times per second and simultaneously
records the amount of reflected and absorbed light. As blood flow increases or
decreases, the absorption of green light also changes, thus allowing you to count
the beats. The difference between heart sensor and body recognition sensor is
therefore to be found only in the period of time in which the LEDs remain on. It
takes several seconds (10 to 15 s) to measure your heart rate, it takes less than
one to detect your body.

3.1 Application

The purpose of the application is to protect a user’s smartwatch from unwanted
access for the duration of a session of use (on-off). In this process, sensors play
a central role, as they provide the information necessary to understand whether
the device has been stolen. At the code level, the data collection part is achieved
through the use of four classes: Sensor, SensorManager, SensorEvent and
SensorEventListener. Access to each sensor is managed by SensorManager
which, through the registerListener and unregisterListener methods, allows
you to activate or deactivate it. SensorEvent instead represents a Sensor type
event and contains information such as sensor type, timestamp, accuracy and
measured data. Finally, SensorEventListener, takes care of managing the noti-
fications received by the SensorManager. The fundamental method of this class
is onSensorChanged, which is called whenever a sensor measures a new event.

Once the application is started, the accelerometer begins to measure external
events. The onSensorChanged method detects these changes and, based on their
value, makes a decision:
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Continuous Authentication on a Smartwatch 5

– if the acceleration is within a suspicious interval, the accelerometer is turned
off and the gyroscope activated for a further check;

– if the acceleration is beyond a limit threshold, the accelerometer is turned off
and the heart / body detection sensor is activated.

In the first case, the gyroscope is used to understand if the data measured by
the accelerometer are really suspicious. If they are, the heart sensor is activated,
otherwise the gyroscope is turned off and the accelerometer is turned on again.
In the second case, the detected acceleration values are so high as to assume
that a theft is in progress. Consequently, the heart sensor must be activated
immediately. The latter analyzes the heartbeat and, if it finds it, it turns off
and the accelerometer is reactivated. If a beat is not detected the application
freezes, the sensors are disabled and the session terminated. In the case of the
body detection sensor, the operation is the same. The main flaw of this solution,
however, lies in the fact that this sensor is unable to recognize whether the
smartwatch is still on the wrist or not, but only whether or not it is in contact
with the skin. This means that, if the device is removed and kept in contact with
the sensor inside the hand, the application does not detect any problems.

The app is designed to work continuously throughout a session despite the
presence of the Android ambient-mode system. Ambient-Mode is a mode created
to reduce battery consumption by pausing an app when a user stops interacting
with the smartwatch. The app starts working again only when WearOs detects
the reactivation of the watch (interactive-mode). However, there are special cases
of applications that can work in both ambient and interactive mode: their name
is always-on app. In this project it is essential to develop an always-on app that
continuously collects data from sensors. Thus it was necessary to add a code
string to the app manifest as defined on the “Android Developers” portal [9].

3.2 Motion Pattern

The different sensors on a smartwatch are energy-intensive and quickly drain
the battery. Hence, we developed a thresholds-based algorithm to distinguish
between risky movements and simple routine gestures such as checking the dis-
play or paying. In this way, the heart and body sensors are activated only if a
suspect movement is detected.

To identify routine movements we tested 3 different subjects (two wearing the
watch on the left, the third on the right), each of which performed 30 repetitions
for each movement. All sensors measure events every 225 ms.

Checking the Display. The smartwatch is used to check the time and, above
all, to manage notifications from the associated smartphone. Controlling the
screen is therefore a fundamental action, repeated several times throughout the
day. The central part of this movement, that is the rotation of the wrist towards
the inside of the arm, can be mapped with the use of the gyroscope alone.
To understand when to turn on the gyroscope, however, it is first necessary to
understand which accelerometer values are a symptom of this gesture.
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Taking an average of the values collected on the 3 users, it appears that, in the
initial phase of the gesture, the acceleration along x is equal to 9.0 m/s2, along
y at −7.7 m/s2 and along z a − 6.0 m/s2. It is therefore clear how controlling
the display causes precise stresses on the accelerometer. To be able to recognize
them, 3 thresholds are defined, the exceeding of which can be linked to the fact
that the movement has occurred. The thresholds are established on the basis of
the minimum and maximum values recorded in all repetitions, with the addition
of a tolerance range of 0.5 m/s2:

– [5,6 13,7] m/s2 on x;
– [–12,8 –5,0] m/s2 on y;
– [–9,3 –3,5] m/s2 on z.

Once the acceleration values beyond the previously mentioned thresholds have
been detected, it is possible to move on to the study of the data produced
by the gyroscope. The action of checking the time is relatively fast and takes
just over half a second. Considering the sampling rate mentioned above (one
sample every 225 ms), you are able to get two good measurements for each
repetition of the movement. This means that, approximately, the action can be
evaluated as the set of two gestures, called “phase 1” and “phase 2”, which
occurred one after the other. By observing the data it is possible to note that
the components of the angular velocity most affected are those around the x
and z axis. The data measured on y are not particularly relevant: many angular
velocity values oscillate around 0 rad/s, relatively small numbers that can be
caused by several small movements of the smartwatch. By evaluating the data
relating to the angular velocity around the x axis, it is instead possible to notice
a precise trend in all three users. The graphs show how the values measured in
the first part (blue line) of the movement tend to be lower than those measured
in the second (red line). Moreover, it is understood that the measured data
are repeated constantly within an interval. In order To define this interval, we
consider as extremes of the range, the minimum and maximum values of each
phase. Starting from these numbers, establishing a tolerance interval of about
0.5 rad/sec and approximating to a digit to the right of the comma, the resulting
ranges for the x axis are:

– [1,2 8,5] rad/s on phase 1;
– [1,4 9,4] rad/s on phase 2.

The last axis to consider is the z. The angular velocity measured on this
axis is positive for user 1 (watch on the right wrist), negative for users 2 and 3
(watch on the left wrist). The graphs below represent the evolution of speed in
absolute value in the two phases for all three users. Unlike the values measured
on x, in this case there is no clear relationship between the trend of the curves.
In particular, the two curves tend to often intersect between one repetition and
the other, a sign of the fact that there is no phase that always predominates
over the other in terms of speed. The relevant data is instead the value of these
speeds. In fact, going to evaluate the averages, we note how |w| is always clearly
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Continuous Authentication on a Smartwatch 7

Fig. 1. |w| trend on the x axis for users 1, 2 and 3.

different from 0 rad/s. This means that the rotation of the wrist around the z
axis is a gesture that occurs with certainty every time the smartwatch display
is checked. As previously for the x axis, the minimum and maximum values of
|w| are evaluated recorded to define a range. Also in this case a tolerance of 0.5
rad/s is used. The ranges obtained by approximating are:

– [0,9 5,3] and [–5,3 –0,9] rad/s on phase 1;
– [0,8 4,6] and [–4,6 –0,8] rad/s on phase 2.

Paying. Another very important, although less frequent, gesture is payment
via NFC. NFC, also called proximity communication, is a transceiver technology
that allows wireless communication. In the case of smartwatches, it is used to
make payments with the simple gesture of bringing the watch close to a reader.
More specifically, the action to be taken is to stretch the arm and rotate the
wrist outwards, in order to bring the watch as close as possible to the reading
device. Studying the data, it appears that the gesture of extending the arm
causes acceleration values clearly different from 0 m/s2 only along the x and
z axes: the averages are respectively 4.4 m/s2 and 5.8 m/s2. By repeating the
procedure already carried out in the case of the display control, 3 thresholds are
established which, if exceeded, signal the possible gesture of payment:

– [1,6 7,3] m/s2 on x;
– [–1 1] m/s2 on y;
– [3,0 9,0] m/s2 on z.
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Fig. 2. |w| trend on the z axis for users 1, 2 and 3.

Turning to the evaluation of the gyroscope data, it is also clear in this case that
it is not possible to consider the data relating to the y axis as they are too
variable from user to user.

By evaluating the graphs below relating to x, we note instead how the smart-
watch is always stressed around this axis: the |w| they are in fact constantly
greater than 0 rad/s. From these data, however, there is no clear trend in the
relations between the two phases: the |w| average is greater in phase 1 for users
1 and 3, the opposite for user 2. This can be translated into the fact that the
values recorded on x are influenced by the type of user making the movement.
The only certainty that can therefore be established is that to pay it is necessary
to rotate the wrist and then apply a |w| > 0 around the x axis. By repeating the
procedure implemented in the case of display control, you can search for ranges
within which you are able to identify the gesture. To do this, the graphs relating
to the highs and lows of the two phases are still used. Approximating, applying a
tolerance of 0.5 rad/sec and considering that the rotation around x is negative,
the resulting intervals are as follows:

– [–7,5 –0,6] rad/s on phase 1;
– [–6,6 –0,5] rad/s on phase 2.

For the z axis, the situation changes: it is immediately evident how the curve
of phases 1 (green) always stays above the curve of phases 2 (purple) for all
users. The trend is therefore repetitive and, regardless of the user considered,
|w| in the initial part of the movement is always greater than that in the final
part. Approximating and establishing a tolerance of 0.5 rad/s, the ranges are
therefore:
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Continuous Authentication on a Smartwatch 9

Fig. 3. |w| trend on the x axis for users 1, 2 and 3.

– [0,9 5,4] and [–5,4 –0,9] rad/s on phase 1;
– [0 4,8] and [–4,8 0] rad/s on phase 2.

Movements at Risk. Up to now, the movements considered safe have been
described, for which it is not necessary to carry out the control by means of a
heart sensor. As already mentioned, however, there are also risky ones, consid-
ered as such because they put the security of the smartwatch at risk. All these
movements can be traced back to a maxi-group, that of thefts. In fact, consid-
ering that a smartwatch is always on the owner’s wrist, this is the only way to
get hold of it. In the case of thefts carried out with the use of force, the modus
operandi of a criminal is to grab the smartwatch and pull with enough force
to break the strap that keeps it tied to the wrist. The action, which must be
rapid and impetuous, is characterized by the fact that the smartwatch under-
goes strong jolts in one or more directions. For this reason, the choice of the
sensor to be used to detect these movements fell on the accelerometer. The mea-
surements made have shown that, approximately, the alarm threshold can be
set for acceleration values higher than 20 m/s2 along at least one of the three
axes. This uncertainty is due to the fact that, to find data close to reality, it is
necessary to apply such force as to damage the watch. As it was not possible
to do this, a value was chosen which, while not breaking the strap, is the result
of a strong tug on the wrist. This solution can still be considered reliable, given
that the accelerations that a smartwatch normally undergoes are rarely above
20 m/s2. To confirm this, tests have been carried out on a user with the aim of
detecting how many times this threshold is reached in the course of a day. The
data collected showed that this occurs on average no more than 2 times. Mea-
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Fig. 4. |w| trend on the z axis for users 1, 2 and 3.

suring values over 20 m/s2 therefore means that you are already sure that some
suspicious movement is taking place for which it is worth activating the heart
or body recognition sensor. Furthermore, given the low probability of exceeding
this threshold with normal gestures, it is possible to avoid unnecessary energy
consumption due to the activation of the optical sensors.

4 Experiments

The biggest challenge in this project is to reconcile the continuous use of sensors
with acceptable energy consumption. As seen above, the developed app uses
the accelerometer most of the time, activating the other sensors only in the
presence of particular triggers. In this way it is possible to significantly reduce
the activation time of the gyroscope and optical sensors, with consequent energy
savings. To quantify these consumptions, tests were carried out on the same users
used to map the movements. Each user wore the smartwatch for 3 different days,
with active, in addition to sensors, bluetooth and NFC.

The tests are intended to try to understand if the watch is able to stay on
for a whole day with the app active.

Heart Sensor. As shown in Table 1, the average for all three users is 371 min
of runtime, 2 suspicious movements were detected.
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Continuous Authentication on a Smartwatch 11

Table 1. Heart sensor

Day 1 Day 2 Day 3 Average Battery life

User1 0.277 %/min 0.278 %/min 0.293 %/min 0.282%/min 355 min

User2 0.266 %/min 0.272 %/min 0.281 %/min 0.273%/min 366 min

User3 0.254 %/min 0.258 %/min 0.250 %/min 0.254%/min 394 min

Body Recognition Sensor. As shown in table 2, the average for all three
users is 352 min of runtime with 2 suspicious movements detected.

Table 2. Body recognition sensor

Day1 Day2 Day3 Average Battery Life

User1 0.309 %/min 0.304 %/min 0.267 %/min 0.293%/min 341 min

User2 0.284 %/min 0.288 %/min 0.281 %/min 0.284%/min 352 min

User3 0.265 %/min 0.284 %/min 0.279 %/min 0.276%/min 352 min

Discussion. The optical sensors are activated a few times during a day: this
means that the app is able to classify as routine almost all the movements
performed with the exception of a few sudden movements. By studying the
estimated battery life values, it can be seen that the choice to use the heart sensor
or the body recognition sensor does not significantly impact the performance of
the app: the smartwatch lasts about 6 h in both cases. The variance between
the measurements of the same user or between different users, all other things
being equal, are mostly due to external lighting. In fact, the smartwatch tends
to increase the brightness of the screen in relation to how much light there is in
the place where you are. This behavior causes higher consumption in the case
of a user who uses the watch outdoors than one who spends more time indoors.
The values higher than the average measured for each user can therefore be
explained by this reasoning. For the same reason, the average duration in the
case of the body recognition sensor (352 min) is lower than that of the heart
sensor (371 min): the days in which the measurements of the first case were
carried out were in fact much sunnier than the second case.

5 Conclusions

The purpose of this paper was to create a continuous authentication system for
smartwatches based on the detection of suspicious movements through motion
and optical sensors. The developed app has proved to be valid in identifying
the majority of movements like violent thefts and other risky situation. On the
energy consumption side, the app has proved to be particularly energy-intensive
due to the continuous use of sensors. Although their use has been optimized in
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such a way to impact the battery as little as possible, the duration of a charging
cycle has been estimated around 6 h. These numbers testify that the app, even if
it works, cannot currently be considered for a real application. Any user expects
the smartwatch to stay on from morning to evening, which is currently impossible
with the authentication app running. A session of use should be at least 12 h,
almost double the autonomy found on the Fossil Gen 5. Using other devices,
battery life is likely to increase, but still not enough to meet the needs of an
average user. Currently, the only hope for these types of applications that highly
exploit sensors is that the smartwatch market will be able to offer increasingly
high-performance models both in terms of battery life and optimization of the
operating system. Before that moment it is very complicated to be able to use
solutions such as the one proposed in this paper.
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