
1086 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 67, NO. 4, NOVEMBER 2020

A Fraud-Resilient Blockchain-Based
Solution for Invoice Financing

Meriem Guerar, Alessio Merlo , Mauro Migliardi , Francesco Palmieri , and Luca Verderame

Abstract—Invoice financing has been a steadily growing compo-
nent of the financing market as a whole for the last few years, and,
in 2016, it became the third largest financing market. Nonetheless,
the risk of frauds is still very high, and most solutions proposed so
far are based on private, proprietary platforms that cannot match
the global nature of such a market. Even the most recent proposals
based on blockchain are mainly adopting a private, permissioned
blockchain due to the lack of confidentiality in public blockchain.
In this article, we propose an Invoice financing platform based on a
public blockchain supporting both fully open and group-restricted
auctioning of invoices. We addressed the confidentiality issue by
storing the confidential data encrypted in IPFS and the correspond-
ing hash in the smart contract hosted on Ethereum blockchain. Our
blockchain-based solution ensures data confidentiality and benefits
from the main properties of the public blockchain required in In-
voice financing systems, such as transparency, immutability, trust-
worthiness, and security. Furthermore, our platform introduces a
reputation system based on the past behavior of entities, computed
using the blockchain global ledger. Such a reputation system al-
lows insurance companies to modulate the cost of the insurance
contracts they offer. This combination guarantees the complete
transparency and tamperproofness of a public blockchain, while
it allows reducing insurance costs and fraud possibilities.

Index Terms—Auction, blockchain, ethereum, invoice factoring,
IPFS, reputation system, smart contract.

I. INTRODUCTION

CASH flow is a major source of complexity in the daily life
of companies. The delay between the invoice date and its

actual payment may represent a significant challenge for any
enterprise, but even more so for small to medium enterprises
(SMEs). To mitigate cash flow issues, SMEs commonly rely on
invoice financing solutions such as invoice factoring.

The process of factoring can be described as follows: an
enterprise sells an invoice to a factoring company (typically
a financial institution such as a bank) for immediate payment
of an agreed percentage of the invoice amount. The financial

Manuscript received June 30, 2019; revised October 23, 2019, December 5,
2019, and January 27, 2020; accepted January 29, 2020. Date of publication June
30, 2019; date of current version October 9, 2020. Review of this manuscript
was arranged by Department Editor Dr. K.-K. R. Choo. (Corresponding author:
Francesco Palmieri.)

Meriem Guerar, Alessio Merlo, and Luca Verderame are with the DIBRIS,
University of Genoa, 16126 Genoa,, Italy (e-mail: meriem5mias@gmail.com;
alessio.merlo@unige.it; luca.verderame@unige.it).

Mauro Migliardi is with the Department of Information Engineering, Univer-
sity of Padua, 35122 Padova,, Italy (e-mail: mauro.migliardi@unipd.it).

Francesco Palmieri is with the Department of Computer Science, University
of Salerno, 84084 Fisciano,, Italy (e-mail: fpalmieri@unisa.it).

Color versions of one or more of the figures in this article are available online
at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEM.2020.2971865

institution then gets the payment of the full amount of the invoice
from the original buyer on the due date.

This process helps the enterprises in steadying their cash
flow, and it represents a significant source of income for the
financial institutions. However, the financing process exposes
the factoring companies to serious fraud risks mainly because of
the lack of a unified view of all the invoice factoring instances.
As an example, a well-known invoice factoring fraud risk is
the case of double financing. Such fraud happens when the
enterprise sells the same invoice to more than one financial
institution leveraging the lack of a joint, unified view of the
situation among financial institutions. At the due date of the
invoice, the buyer will pay the invoice to just one institution,
leaving the other(s) unpaid. Another significant source of risk
is the reliability of the original buyer. Unfortunately, with a
traditional invoice financing system, the financial institution has
very little or no information about the original buyer. Hence, it
has no way to easily predict if there is a chance that the original
buyer will refuse to pay the invoice on the due date.

Beside double financing and trust issues, investors are exposed
to other fraud risks. Indeed, the seller may knowingly submit
false, modified invoices with the intent to commit fraud, either
acting alone or in cooperation with the buyer. To this aim, invoice
financing platforms may introduce insurance companies that can
refund the defrauded investors in exchange for the subscription
to an insurance policy. However, without concrete countermea-
sures to reduce the fraud opportunity, the cost required for the
insurance policy will make the whole operation economically
unfeasible. Hence, the simple addition of an insurance is not
considered a viable solution.

The unified vision that is needed could be provided by means
of an invoice financing platform with a centralized database of
all the invoices, the enterprises, the buyers, and the factoring
instances.

However, centralized systems are typically expensive and
considered a single point of failure. Indeed, they are prone to
privacy infringement, data manipulation, and attacks, which may
make them unreliable and untrustworthy.

With the raising of blockchain technology and smart con-
tracts, we argue that we no longer have to rely on centralized
systems. Blockchain technology may be used to implement a
tamper-proof, trusted, and decentralized ledger [3] that relies on
a consensus algorithm to validate the data to be included [4].

A preliminary and partial version of the ideas presented in
this article has been introduced in [5], where an auction-based
invoice financing solution that leverages the InterPlanetary File

0018-9391 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 31,2022 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2272-2376
https://orcid.org/0000-0002-3634-7554
https://orcid.org/0000-0003-1760-5527
https://orcid.org/0000-0001-7155-7429
mailto:meriem5mias@gmail.com
mailto:alessio.merlo@unige.it
mailto:luca.verderame@unige.it
mailto:mauro.migliardi@unipd.it
mailto:fpalmieri@unisa.it
https://ieeexplore.ieee.org

GUERAR et al.: FRAUD-RESILIENT BLOCKCHAIN-BASED SOLUTION FOR INVOICE FINANCING 1087

System (IPFS) [6] and the Ethereum blockchain [7] has been
proposed. In this article, we reengineered the basic model by
consolidating its workflow in order to allow the investors to
withdraw immediately their bids that were overbid instead of
waiting until the end of the auction. We also improved all
the integrity mechanisms in order to use stronger encryption
practices and minimize the number of hashes to be stored within
the smart contract. Finally, a proof of concept implementation
has been presented, allowing us to provide an estimation of the
cost of the transactions in terms of ETH and USD. Besides, the
security of the proposed scheme has been analyzed in detail by
describing the main properties that make our solution robust
against the most common frauds.

The rest of this article is organized as follows. In Section II,
we introduce our invoice financing solution. In Section III, we
present the implementation and testing details. In Section V, we
present related work. Finally, Section VI concludes this article.

II. BLOCKCHAIN-BASED INVOICE FINANCING SOLUTION

A. System Overview

We present a proof-of-concept implementation of an invoice
financing platform designed to fulfill the needs of SMEs. How-
ever, there is no preclusion for larger players too. Our implemen-
tation relies on the IPFS and supports reputation profiles and
leverages smart contracts hosted on the Ethereum blockchain.
Unlike the traditional invoice financing model, our platform
provides an open environment where the chance to finance an
invoice is not offered only to banks and financial companies.
On the contrary, any investor can register into the platform
and participate in auctions in order to try acquiring the right
to finance an invoice. At the end of the auction, among the
offers that satisfy the requirements (e.g., a minimum requested
amount), the best one wins the auction. Such a mechanism
enables the enterprise looking for financing to invite a large
number of investors from around the world and allows getting
the best financing offer in a shorter time and with less effort.

Since the invoice data are very sensitive and storing this data
directly in the blockchain is very expensive, we do not plan to
save the entire invoice inside the blockchain. On the contrary, we
propose to use IPFS to store these data in a decentralized, dis-
tributed manner that is publicly and globally accessible through
the use of IPFS hashes. Before storing the invoice data in IPFS,
we encrypt it by using pretty good privacy (PGP).1 Then, we
store the IPFS hash into the smart contract. In this way, there
is no possibility to alter the invoice content, as the new version
would have a different IPFS hash, which does not match with
the hash stored within the smart contract. At the same time, only
authorized entities will be able to access it, thus ensuring the
confidentiality of the invoice data.

In order to access the stored data, the authorized entity needs
to perform the following two steps:

1) decrypt the generated random key using their private keys;
2) use this random key to decrypt the invoice data.
Moreover, to reduce frauds, we introduce a reputation system

based on the past behavior of entities stored inside the ledger.

1[Online]. Available: https://en.wikipedia.org/wiki/Pretty_Good_Privacy

Since the blockchain is resilient to modifications, the history of
the entities participating in our system is very reliable. Moreover,
as the sensitive part of the invoice is not stored in the public
blockchain, the reputation system is capable of preventing un-
wanted disclosures.

For instance, the list of invoices paid on time, as well as the
ones that have gone unpaid or delayed by a buyer, can be quickly
built without compromising the confidentiality of data. Such
functionality can help investors in the selection of trustworthy
counterparts while pushing malicious buyers to the fringes of
the system.

B. System Design

The platform offers its users the creation of a new account at
registration time. A user can register by using a different role
(e.g., seller or investor) and needs to provide a valid identity
certificate. Such choice prevents from jumping off an identity
that has been tarnished by the past behavior, by creating a
different account every time.

The type of account defines the services that are provided by
the platform. The roles of the entities can be summarized as
follows.

1) Seller: is a company that has goods to be sold, packaged,
and transferred to the buyer. The seller is looking to
improve its cash flow by creating a smart contract capable
of selling the invoice to one of the investors enrolled in
the platform through an auction. This kind of company is
often an SME.

2) Buyer: is a company that would like to purchase the goods
from the seller by paying the shipping amount on delivery
and benefits from the delayed payment of the full invoice
amount (i.e., the price of goods plus taxes).

3) Transporter: transports goods and provides information
about the shipping status.

4) Authorized investor: is a person or a financial institution
that is allowed to participate in the auction to buy the
invoice at a price lower than its real value to gain a profit.

5) Insurance: is responsible for reimbursing the authorized
investor in case the buyer refuses to pay.

Fig. 1 illustrates a general overview of the proposed invoice
financing solution. The seller writes the invoice data into IPFS
and creates a smart contract that specifies some information (e.g.,
the minimum amount required to participate in the auction, the
hash to retrieve the invoice from IPFS), which are described in
details in Section III-A. Then, he deploys it into the Ethereum
blockchain. If the invoice is genuine, the buyer accepts the
invoice and pays the shipping amount. When he accepts the
invoice, the buyer states that he verified all the information
mentioned in the invoice, and he agreed to pay the shipping
amount immediately and the entire amount on the due date as
specified in the invoice. Afterward, the transporter ships the
goods and updates the shipment status.

Once the buyer confirms the delivery of the goods, the in-
vestors can participate in the auction and thus make an offer
after verifying the following conditions:

1) the buyer has accepted the invoice;
2) the Invoice ID has not been submitted before;

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 31,2022 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

https://en.wikipedia.org/wiki/Pretty_Good_Privacy

1088 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 67, NO. 4, NOVEMBER 2020

Fig. 1. Overview of the proposed invoice financing solution highlighting the key components (i.e., smart contract, IPFS) and the main participating entities along
with their successful transactions.

3) the transporter confirms that he received the goods to be
shipped;

4) the buyer confirmed the delivery in order.
Furthermore, the investor can check, by using the reputation

system, if any of the entities involved in the transaction is
untrustworthy. Still, if an investor decides to finance an invoice
anyway, he is fully responsible for his decision. In case of fraud,
his request for a refund will be rejected by the insurance.

Besides protection against double financing and submitting
false or modified invoices, our platform mitigates the risk of
a buyer that does not pay as agreed. Thanks to the reputation
system provided by our platform, the buyer will be marked as
untrustworthy, and investors make a fully informed decision if
they want to run the risk. Thus, our platform facilitates invoice
financing for SME and reduces the risk of fraud.

C. Invoice Financing Process Workflow

Using our platform, the seller can open his auctions to all the
investors in the platform or only to some predefined investors.
In this section, we assume that the seller authorizes only two
investors (namely 1 and 2) to facilitate the description of the
workflow. In the first step, the seller generates a random key
offline and encrypts the invoice data using this key. Then, to
allow only the two selected investors to participate in the auction
and the buyer to verify the invoice, he encrypts the random key
with the public key of investor 1, 2, and the buyer.

Fig. 2 shows the message sequence diagram of the process
of selling the invoice through an auction. Such a process opens
two possible scenarios. In the first scenario, the buyer pays the
invoice on the due date. In the second one, the buyer refuses to
pay. The different entities involved in the process interact among
them and with the smart contract as follows.

1) The seller creates a smart contract and deploys it in the
Ethereum blockchain.

2) The buyer decrypts the random key stored in the IPFS
by using his private key and verifies the invoice data. If
the invoice is genuine, the buyer accepts the invoice and
performs a safe payment of the shipping price. The smart
contract holds this amount of Ether until the delivery.

3) The transporter verifies if the buyer has accepted the
Invoice, and then he updates the shipment status on
the smart contract to InTransit upon receiving the
goods.

4) The buyer verifies if the shipment status on the smart
contract is InTransit then, updates it to Delivered
once the goods are received. The smart contract pays-out
the transporter for the shipment.

5) The investors verify the participation conditions men-
tioned in Section II-B to decide whether to bid on this
Invoice or not.

6) In case all the conditions are met, the first investor places
his bid, which should be higher than the minimum bid
requested by the seller.

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 31,2022 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

GUERAR et al.: FRAUD-RESILIENT BLOCKCHAIN-BASED SOLUTION FOR INVOICE FINANCING 1089

Fig. 2. Sequence diagram showing the interactions of the different parties with the invoice financing contract, the automated payment of transactions when certain
conditions are met, and the events used to track the invoice, goods, and the buyer’s reputation considering two different scenarios A and B.

7) The second investor places his bid, which should be
higher than the highest bid (i.e., bid 1). The highest bidder
became the owner of the Invoice when the auction is
ended.

8) The investor 1 asks to withdraw his bid that was overbid.
The smart contract sends the investor 1 his corresponding
bid amount.

9) The seller asks for early payment when the auction is
ended. The smart contract transfers the highest bid to the
seller.

10) In scenario A, the buyer pays the entire amount on the
due date of the Invoice to investor 2 through the smart
contract. An event BuyerReputation(Buyer
Address,“Invoice paid on due date”)
will be triggered to help in tracing the buyer’s reputation
and in notifying all parties.

11) In scenario B, the buyer has not paid on the due date
the invoice as agreed, and thus, investor 2 sends a
refund request. Two events will be triggered Refund
Request(msg.sender, “Refundrequest”)
to notify the Insurance and BuyerReputation
(BuyerAddress,“Unpaid Invoice on due
date”) to create a notification and save a log about the
buyer’s reputation. In this scenario, the buyer’s profile
will show that this buyer is untrustworthy.

12) The insurance verifies both that investor 2 has not already
asked for a refund, and that he has carried out the required
verification before participating in the auction.

13) The insurance refunds investor 2 through the smart
contract.

It is worth to mention that in step 9, the seller manually invokes
the smart contract when the auction ends to get his money, as the

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 31,2022 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

1090 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 67, NO. 4, NOVEMBER 2020

contract cannot autonomously self-activate. However, automat-
ing the reimbursement for investors that did not win the auction is
made possible by relying on step 9. Nevertheless, we added step
8 to let the investors withdraw their funds rather than push funds
to them automatically for the following security reasons: 1)
Sending Ether back to all the investors that did not win auctions
could run out of Ethereum gas. Gas is a cost associated with the
transaction whose aim is to make Ethereum resilient to denial of
service attacks.2 2) Sending Ether to unknown addresses could
lead to security vulnerabilities [8].

III. IMPLEMENTATION AND TESTING

This section presents the implementation and the test-
ing/evaluation results of the proposed Invoice financing plat-
form, thereby detailing the smart contracts, the validation for a
set of relevant test cases, and the cost analysis on the blockchain
network.

A. InvoiceFinancing Contract

We describe the proposed smart contract-related interface and
algorithms. The smart contract is written by using the Solidity
language and compiled and tested using the Remix IDE, which
provides the necessary tools for testing and debugging.

Solidity offers a set of system-wide variables, known as global
variables, that are mainly used to provide information about the
blockchain or are general-purpose utility functions. In details,
the implementation of the InvoiceFinancing contract relies on
the following global variables:

1) msg.sender: It contains the sender of the message to
the contract (current call). When the smart contract is
deployed, msg.sender stores the address of the contract
creator (i.e., the seller of the invoice), while when a
smart contract function is called, msg.sender contains the
address of the function caller;

2) msg.value: It is the number of Wei sent with the message.
Wei is the smallest unit of Ether, 1 Wei = 10−18 ETH;

3) now: It contains the current block timestamp (alias for
block.timestamp).

InvoiceFinancing Contract Initialization: This process de-
fines some state variables, which are permanently stored in the
contract storage, and they are initialized by the seller through
their constructor. The constructor is a special function that is
called only once at contract deployment. The main state variables
are as follows:

1) InvoiceID, which defines the hash (32 bytes) of the
unique identifier of the Invoice;

2) IPFSHash string, which defines the location from which
the encrypted confidential Invoice data can be retrieved;

3) TotalAmount, which defines the amount of Ether the
buyer has to pay on the due date of the Invoice;

4) ShippingCost, which defines the amount of Ether the
buyer has to pay for shipping the goods;

5) InvoiceDueDate, which defines when the buyer
should pay the full Invoice amount.

2[Online]. Available: https://ethgas.io/

6) MinimumBid, which defines the minimum bid accepted
by the seller.

7) AuctionStart, initialized with the current block
timestamp through the special variable now.

8) AuctionDuration, which defines the duration of the
auction.

The invoice financing contract defines the following nine core
functions, which are part of the contract interface and can be
either called internally or via messages:
AcceptInvoiceAndPayShipping()
This function can only be executed by the buyer. Once the

buyer invokes this function and pays the correct shipping price
mentioned in the contract, the smart contract holds the cor-
responding amount of Ether, changes the Invoice state In-
voiceAccepted (which is initialized by default to false) to
true, and broadcasts a notification to inform the counterparts
that the buyer has accepted the Invoice. This change in the
Invoice state is a requirement for the transporter to be able to
hand in the goods.
GoodsReceived()
This function can only be executed by the transporter. The

transporter can update the shipping status to InTransit only
if the ShipmentStatus is InStock and InvoiceAc-
cepted is true to ensure that the buyer has paid the shipping
fees and the smart contract will pay him out upon the delivery.
This change in the Invoice state is necessary for the buyer to be
able to update the status to Delivered.
GoodsDelivered()
This function can only be executed by the buyer. To receive

the goods from the transporter, the buyer should call this func-
tion, which updates the ShipmentStatus to Delivered

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 31,2022 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

https://ethgas.io/

GUERAR et al.: FRAUD-RESILIENT BLOCKCHAIN-BASED SOLUTION FOR INVOICE FINANCING 1091

and payout the transporter. This function requires that Ship-
mentStatus isInTransit to prevent the buyer from calling
this function more than once.
PlaceBid()
The seller cannot execute this function because he is the

owner of the Invoice. An investor can place the bid only
when ShipmentStatus shows that the goods have been
delivered and the auction is still open. His bid should be
higher than the minimum bid and the highest bid to become
the highest bidder. When the auction end, the highest bidder
win.
EarlyPaymentRequest()
This function allows the seller to send the highest bid to his

account but only after the auction ended and the highest bid is not
equal to zero to ensure that at least one investor has participated
in the auction or to prevent the seller from calling this function
more than once.
WithdrawBid()
This function allows investors to withdraw their bids that were

overbid. Hence, it requires that the msg.sender is different
from the address of the highest bidder, and their bids are higher
than zero to ensure that they have placed a bid that they did not
withdraw it yet.

PayOnDueDateOfInvoice()
This function can only be executed by the buyer before or

on the Invoice due date. It requires that the amount of Ether
sent by the buyer is equal to the total Invoice amount and that
the highest bidder exists to transfer this amount to his account,
change the value of BuyerPaidOnDueDate to true and
notify the counterparts that the buyer has paid the Invoice on the
due date.
AskRefund()
This function can only be executed by the highest bidder

if the buyer did not pay on the due date of the Invoice. The
smart contract creates two notifications, the first to inform the
Insurance that the highest bidder is asking for a refund, while
the second one to notify all the counterparts that the buyer is
untrustworthy because he did not pay the Invoice on the due
date.
Reimbursement()
This function can only be executed by the Insurance after the

Invoice due date. It requires that the value of BuyerPaidOn-
DueDate is equal to false and that the highest bidder exist
to refund him.

B. Testing and Validation

This section describes the details of testing the smart contract
code using Remix IDE. We tested all functions for several
important aspects and test cases to ensure that the logic and
the state of the contract work correctly.

1) Test Case 1—Role Restriction: The contract functions are
restricted based on the role of each participant. For example,
the invoice can be accepted only by the buyer, while the change
of the shipment status to InTransit can be done only by

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 31,2022 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

1092 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 67, NO. 4, NOVEMBER 2020

Fig. 3. Details of a failed transaction due to role restriction.

Fig. 4. Successful transaction of buyer payment of shipping amount upon accepting the Invoice.

Fig. 5. Failed transaction made by an investor who tried to place a bid with an amount lower than the minimum bid.

the transporter. All the functions of the invoice financing
contract have been tested successfully for role restriction. As
shown in Fig. 3, if the seller (that owns the Ethereum address
0xca35b7d915458ef540ade6068dfe2f44e8fa733c)
tries to accept an Invoice, the transaction fails thereby generating
an error.

2) Test Case 2—Payable Functions: In this experiment, we
tested all payable functions. In particular, we made tests on the
requirements related to the received amount, as well as whether
this amount has been transferred to the appropriate recipient
as expected for each function. For testing purpose, we set the
ShippingCost in the contract to 1 ETH, the MinimumBid
to 17 ETH, and the TotalAmount to 20 ETH. We used the
default accounts provided by Remix. Each account is loaded
with 100 ETH by defaults.

The Invoice Financing contract has the following payable
functions: PlaceBid, AcceptInvoiceAndPayShip-
ping, PayOnDueDateOfInvoice, and Reimburse-
ment. PlaceBid requires that the collected funds are superior
or equal to the MinimumBid. While the other functions require
that the received funds in Ether are equal to the Shipping-
Cost, TotalAmount, and ReimbursementAmount,
respectively.

Those restrictions ensure that the transaction fails if any
of the conditions are not met, which prevents the function
caller from changing the invoice financing contract state by
sending an amount of Ether different or inferior to the re-
quired amount. For instance, if the buyer whose address is
0x14723a09acff6d2a60dcdf7aa4aff308fddc160c
sends the exact amount of shipping cost (i.e., 1 ETH)
upon accepting the Invoice, the transaction succeeds, as
shown in Fig. 4. However, if an investor whose address is
0xdd870fa1b7c4700f2bd7f44238821c26f7392148
makes an offer below the minimum bid (i.e., 15 ETH), the
transaction fails, and the contract state reverts to its original
state as shown in Fig. 5.

Besides requirements or conditions related tests, we tested if
the amount of Ether received by the contract has been transferred
successfully to the appropriate recipient. In particular, we did the
following tests.

1) We checked if the shipping cost sent by the buyer has been
transferred successfully to the transporter once the buyer
confirmed the delivery of the goods.

2) We checked whether the highest bid amount had been
transferred successfully to the seller account when he
asked for early payment as well as if all investors who

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 31,2022 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

GUERAR et al.: FRAUD-RESILIENT BLOCKCHAIN-BASED SOLUTION FOR INVOICE FINANCING 1093

Fig. 6. Successful transfer of total Invoice amount from the buyer to the investor.

did not win the auction were able to withdraw their bids
successfully.

3) In the case of scenario A, we checked whether the winner
of the auction received the total Invoice amount success-
fully on the due date upon the buyer payment. In the case
of scenario B, we checked whether the winner of the auc-
tion received the invoice amount successfully from the
insurance. Fig. 6 shows a successful transaction of the
buyer payment of 20 ETH on the due date of the in-
voice. It is important to note that the Ether balance
of the buyer whose address is 0x14723a09acff6d2
a60dcdf7aa4aff308fddc160c decreased by 20
ETH plus the transaction fees, while the Ether bal-
ance of the winner investor whose address is 0xdd870
fa1b7c4700f2bd7f44238821c26f7392148 in-
creased by 20 ETH.

3) Test Case 3—Transactions Order: The Invoice Financing
Contract functions are designed to be executed in a specific
order. This sequence is ensured by using state variables such
as InvoiceAccepted, InTransit, Delivered as a re-
quirement to complete the transactions.

For instance, the investor cannot place the bid until the goods
are marked as Delivered by the Buyer. On the other hand, the
Buyer cannot change the shipment status to Delivered if the
shipment status was not markedInTransit by the transporter.
Finally, the transporter cannot change the shipment status to
InTransit if the Buyer has not accepted the Invoice.

Hence, the following order should be respected by the par-
ticipants: the Buyer has to accept the Invoice first. Then, the
transporter has to change the shipment status to InTransit.
After that the Buyer has to change the shipment status to
Delivered. Only if these transactions have been executed
successfully, as shown in event logs in Fig. 7, an investor
will be able to place the bid. Otherwise, the operation fails.
When the auction has ended, the seller is able to ask for early
payment. Transactions in Scenarios A and B depend on state
variable BuyerPaidOnDueDate, which determines whether
the Buyer paid the total Invoice amount on the due date or not.
Figs. 8 and 9 show event logs of transactions that occurred in
scenarios A and B, respectively.

C. Cost Analysis

In Ethereum, every transaction performed on the blockchain
network costs gas. The amount of gas depends on the amount
of processing effort required to execute the transaction. The
more complex a transaction is, the more gas it requires. The
transaction cost is calculated by multiplying the amount of gas
with the gas price. The gas price is measured in Gwei, where 1
ETH equals 109 Gwei. The sender of the transaction defines the
price, but it is miner’s choice in which order they will execute
transactions. Since miners prioritize transactions with a higher
gas price, the higher the gas price is, the faster the transaction
will be executed (mined). Vice versa, the lower the price is, the
slower the transaction will be executed.

In order to define the cost of the transaction of operations of-
fered by the proposed Invoice Financing Contract, we deployed
it two times into the Rinkeby testnet blockchain using Metamask
and Remix tools.

The transactions can be seen online3 using the address
0x77F723F074d8F18A922e1582B58ae95A98EDFE91
for scenario A and0x01c73Ab3Cc74176e83c4D9Da2EC3
0bB7127FaEb9 for scenario B.

The addresses used by each participant are as follows:
1) Seller (Owner):0x5EAf9217A42c5EC5685115a994

d2341C828979AD
2) Buyer: 0x4A8d82A7b433b99FCFAB1b8eB48195

Cbf7Eaa5B9
3) Transporter: 0xa924b74EB1a5Da31CbB2f8D3EAA

6b7eeF9CDc079
4) Investor 1:0xb9898F4f32EAfD528Bf65E26a1393

6588e6A7DB6
5) Investor 2:0xd2E1a76B03937B3bF9e009837EF7C

53d8c392Cd6
6) Insurance:0x0de9478544661D916761c1e88c287

a87D06fdC29
Table I summarizes the processing costs measured by

our experiment in gas as well as the respective value in
ETH and US Dollars (USD). A url link has been used determine

3[Online]. Available: https://rinkeby.Etherscan.io/

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 31,2022 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

https://rinkeby.Etherscan.io/

1094 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 67, NO. 4, NOVEMBER 2020

Fig. 7. Event logs before an investor makes an offer.

Fig. 8. Event logs of transactions that occurred in scenario A.

TABLE I
GAS COSTS OF THE SMART CONTRACT FUNCTIONS

the actual gas costs for each call to the smart contract4. When
we experimented, on June 29, 2019, the average gas cost, which
is accepted by the top miners and usually reflects the default
wallet price, was 3 Gwei = 3 · 109 ETH. The contract creation
operation is performed only once by the seller, and the cost is
$1.557. The cost of all the other operations is minimal, as all of
them are less than $0.1.

Using the proposed invoice financing contract, the fees needed
to be paid by each participant depend on the scenario and the
operations assigned to them. For example, the total cost to be
paid by the investor 2 in case he wins the auction, and the Buyer
pays on the due date of the invoice is $ 0.050. While in case
the Buyer did not pay on the due date, the investor will call the

4[Online]. Available: https://ethgasstation.info/

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 31,2022 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

https://ethgasstation.info/

GUERAR et al.: FRAUD-RESILIENT BLOCKCHAIN-BASED SOLUTION FOR INVOICE FINANCING 1095

Fig. 9. Event logs of transactions that occurred in scenario B.

function AskRefund to ask refund from the Insurance, and
thus the cost increases to $ 0.074. However, in case the investor
2 did not win the auction, he will call WithdrawBid instead
to get his currency back and, thus, the total cost is $0.069.

IV. SECURITY ANALYSIS

In this section, we describe the main security properties of
the proposed Invoice financing solution; then, we explain how
these properties make our system resilient to the potential fraud
scenarios.

1) Authorization
a) Only the buyer can accept an invoice (N1): This is guar-

anteed in our system by the fact that the function Ac-
ceptInvoiceAndPayShiping can be executed
only if the Ethereum address of the caller matches the
buyer address defined in the smart contract.

2) Traceability
a) Only invoices accepted by the buyer can be financed

(N2): This property is guaranteed in our system by the
fact that the function PlaceBid cannot be executed
if the goods are not in the state Delivered. This
implies that all the transactions performed before the
confirmation of the goods are successful, including the
Invoice acceptance by the buyer.

b) Only invoices with a confirmed shipping status can
be financed (N3): Similar to the security property N2,
this is guaranteed in our system by the fact that the
function PlaceBid cannot be executed unless the
goods are in the stateDelivered. This means that all

the transactions before the confirmation of the goods
delivery have been performed successfully, including
changing the shipment status to InTransit by the
transporter.

c) Investors finance only invoices that come from trust-
worthy parties (N4): This property is guaranteed in our
system by the fact that an Insurance will not refund an
investor in case he purchases an Invoice in which at
least one of the involved parties (i.e., the seller and
the buyer) is identified as untrustworthy. Therefore,
investors will be interested in accepting only Invoices
that come from trustworthy actors.

3) Availability (Invoice ID)
a) investorA duplicate invoice cannot be accepted by the

buyer nor it can be financed by an investor (N5): This
is guaranteed in our system by storing the hash of
the unique Invoice ID each time the seller submits a
new Invoice for sale in a tamper-proof log, which can
be accessible by anyone in the network thanks to the
transparency feature offered by the Ethereum public
blockchain.

4) Integrity
a) Integrity of the invoice data (N6): In the proposed

solution, it is important to ensure that the Invoice data
stored in IPFS cannot be modified once the buyer
approves that it is genuine. Investors want to make sure
that they are participating in the auction to purchase
an Invoice, which is the same approved by the buyer.
Otherwise, there will be no sense of the whole Invoice
financing system. In our system, the integrity of the

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 31,2022 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

1096 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 67, NO. 4, NOVEMBER 2020

Invoice data stored in IPFS is guaranteed by storing the
IPFS hash in the Invoice Financing Contract. Indeed,
any change to the Invoice data will lead to a new hash
that will not match the hash in the Invoice Financing
Contract.

b) Integrity of the transactions and logs (N7): In our
system, the reputation profile is built on the transaction
history stored in the logs. Thus, it is important to ensure
that no one can change it or delete it. Our solution
guarantees the integrity of the transactions and the in-
formation stored in the logs thanks to the immutability
feature offered by the blockchain consensus.

5) Confidentiality
a) Confidentiality of the invoice data (N8): The confi-

dentiality of the Invoice data is crucial as they may
contain data exploitable by adversaries. In our system,
the Invoice data are stored in IPFS because, besides
cost reasons, the Ethereum blockchain is public, and
thus, anyone can read the data. Furthermore, in our
Invoice financing platform, the confidentiality of the
Invoice data is guaranteed through PGP, a hybrid
cryptosystem that combines symmetric-key encryption
and public-key encryption. Before the seller uploads
his own Invoices in IPFS, he generates a symmetric
key, called Session Key, and encrypts the Invoice data
by using this key. Then, the seller encrypts the Ses-
sion Key with the public keys of the buyer and the
authorized investors and stores it together with the
encrypted invoice data. In this way, only the accred-
ited investors can decrypt the session key using their
private keys and use this last one to decrypt the Invoice
data.

We now analyze some typical fraud scenarios, and we show
how the security properties of the system make these scenarios
impossible.

Scenario 1: The seller knowingly submits a false or modified
Invoice.

In our solution, the Invoice will not be funded by an investor
if the buyer has not previously accepted it. Thus, it is essential
to ensure that only the buyer can confirm the Invoice. The buyer
will be interested in accepting the Invoice only if it is genuine
because his reputation is at stake, and he could lose the shipping
amount. Thus, thanks to the security properties N1, N2, and N6,
our solution is resilient to this kind of fraud.

Scenario 2: The buyer colludes with the seller, he accepts
the false Invoice submitted by the seller to commit fraud and
to split with the seller the amount of Ether received from the
investor.

The cooperation between the two parties is still not enough
to steal the funding. Investors would not purchase an Invoice
if the transporter did not confirm that he received the goods,
which make this fraud not possible unless they cooperate with
the transporter as well. In this case, both the seller and the buyer
will be marked as untrustworthy. Hence, our solution is resilient
to this kind of fraud, thanks to the security properties N3, N6,
and N7.

Scenario 3: The seller submits a duplicate Invoice in order
to have double financing.

In our solution, both the buyer and the investor can verify
whether or not the Invoice has been submitted before using
the hash of the Invoice ID before accepting the Invoice or
participating in the auction. Thus, the security properties N5 and
N6 prevent double financing of the Invoice.

Scenario 4: The buyer refuses to pay the investor on the due
date because he did not receive the goods.

It is essential that the investor can check if the products
have been delivered with a confirmation from the buyer before
participating in the auction. Indeed, if the buyer does not receive
the goods, he is legitimated not to pay the Invoice. Thus, the
investor will not get paid due to a fraud committed by the seller or
the transporter. However, the source of the fraud can be identified
easily from the logs. If the records show that the goods are in
the state InTransit, it means the transporter is the fraudster
otherwise the seller. Thus, our solution is resilient to this fraud,
thanks to the security properties N3 and N7.

Scenario 5: The buyer receives the goods but refuses to pay
on the due date of the Invoice.

In this case, the investor will be refunded by the Insurance, and
the buyer will be marked as malicious and untrustworthy through
his reputation profile. Our solution reduces the possibility of this
kind of fraud, thanks to properties N4 and N7. The buyer will be
interested in paying in time to keep the trust of the other entities.

Scenario 6: A third party collects data about the activities of
one of the parties involved in the Invoice financing activities and
leverages it to gain an improper advantage.

Although this is not precisely a fraud scenario, we think this
may be seen as a significant case of misuse. In our system
properties, N8 prevents any party that is not involved in an
Invoice financing activity to access the confidential data. Hence,
our solution is resilient to this kind of problem.

V. RELATED WORK

Most researchers, when proposing blockchain-based solu-
tions for Invoice financing, focus mostly on the issue of double
financing.

Nijeholt et al. [1] proposed DecReg, a framework based on
blockchain technology to address the “double-financing” issue
in factoring. The framework has been implemented on a private
blockchain. The access to the blockchain is controlled by a
central authority (CA). Authors claim that the only feasible
attack would be a collusion between the seller and the CA,
where the CA prevents the financial institution from accessing
the network, which makes it vulnerable to double-financing.
Hence, the financial institution should halt Invoice financing
until it regains access to the blockchain network. In contrast
to the proposed solution, DecReg was designed to address the
double financing issue solely. Besides, it prevents access to the
confidential data solely from entities outside the network, while
the entities inside the network, even those who are not concerned,
still have access to this data.

Hofmann et al. [9] stated that the registration of Invoices
on the blockchain provides the opportunity to prevent fraud
and double-financing issues in Invoice discounting and fac-
toring. Each Invoice distributed across the network is hashed,
timestamped, and given a unique identifier to prevent multiple

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 31,2022 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

GUERAR et al.: FRAUD-RESILIENT BLOCKCHAIN-BASED SOLUTION FOR INVOICE FINANCING 1097

financing on that particular Invoice. However, authors did not
provide implementation details such as whether the Invoice is
registered in public or private blockchain and how the different
parties interact with each other.

Similarly, Nicoletti et al. [10] stated that blockchain could
play an important role in preventing fraud during procurement
finance solution implementation and notably reverse factoring.
Blockchain provides complete traceability and real-time visibil-
ity on Invoices status, which prevents fraudulent organizations
from extracting funds from multiple financial institutions by
using the same Invoice.

In [11], Omran et al. proposed a conceptual framework based
on blockchain technology for reverse factoring and dynamic
discounting. Efficiency, transparency, and autonomy were iden-
tified as blockchain value drivers that will improve supply chain
finance solutions.

Bogucharskov et al. [12] presented possible interaction be-
tween supplier, customer, and factor in blockchain-based factor-
ing application. In their interaction model, the factor provides
funding to the supplier upon the confirmation of the customer
that he received the goods. However, the authors did not take into
consideration the fraud risks if the supplier or customer is un-
trustworthy or malicious. In addition to that, storing an Invoice in
the public blockchain is very expensive both from the storage and
from the computational point of view. Similarly, Euler Hermes
Digital Agency [13] developed a blockchain application for trade
finance that stores the invoice data in the public blockchain. The
platform allows the seller and their counterparts to register and
manage their Invoices on the Ethereum Blockchain. However,
besides the cost of transactions and smart contract deployment,
their solution does not ensure the confidentiality of the Invoice
sensitive data.

Kayal et al. [14] stated that blockchain technology could be
a powerful tool to tackle the financing problems of SMEs. In
addition, they conducted exploratory research into the appetite
of the stakeholders involved in Invoice factoring and inventory
finance for adopting the blockchain technology. In [15], Hyväri-
nen et al. developed a blockchain-based prototype for managing
dividend flows using the Ethereum smart contract. Their solution
increases the transparency of the transactions and overcomes the
double-spending problem in the public taxation sector.

Recently, Battaiola et al. [2] introduced a permissioned
blockchain-based solution for Invoice factoring that uses
Hyperledger. In their security protocol, the secret data are stored
locally by the peer who owns it, and it can be shared with the
involved participants through a private, secure channel. At the
same time, the Invoice hashes, and the status information are
stored in the distributed ledger in order to enable the factors to
check whether an Invoice has been already factored. However,
unlike the proposed solution, their system does not address the
frauds in the case of scenarios 2, 4, and 5 presented in Section IV.
Also, the security of their solution relies on the trust of a set of
parties called payment service providers who are responsible for
making the money transfers and updating the factor status.

Besides financial frauds, blockchain has also been used to
prevent odometer fraud [16] and work history related fraud [17].
In [16], Chanson et al. store the hash of mileage and GPS data
in the blockchain. While, in [17], Sarda et al. store both the

work history data encrypted with the employees’ public key and
the hash of the unencrypted work history data in the Ethereum
blockchain.

VI. CONCLUSION

Invoice financing is a significant component of the global
financing market, yet, the lack of a holistic vision of the trans-
actions makes it rife with opportunity for fraudsters. To tackle
this problem, we proposed a distributed platform based on IPFS,
smart contracts hosted on the Ethereum blockchain, and a reputa-
tion system that allowed modulating the costs of Insurance. This
will bring significant benefits for any entity involved, ranging
from customers to banking organizations, essentially due to
improvements in transparency of the whole process and the fol-
lowing risk reduction for the involved financial institutions. That
is, the blockchain will make available exhaustive, trustworthy,
and transparent recordings of any transaction, with a success
history that can be used for taking better decisions in financial
planning and request/granting activities. In addition, the use
of smart contracts makes the whole invoice financing process
quicker and reliable, making any invoice a more valuable asset
and facilitating the automation of all the associated activities,
after the agreement of the involved parties. This will also be
effective in fraud-prevention and in reducing the administra-
tive costs associated with credit, with obvious effect on online
marketplaces, by also creating new financial opportunities for
small and medium enterprises that will take advantage of smart
contracts through more flexible and reliable invoice financing
practices. Furthermore, the use of blockchain will give new
opportunities to open innovation networks for developing more
sustainable business models. Nevertheless, while the involved
technologies may be greatly helpful in the design of new finan-
cial solutions, yet it needs to be managed so that it does not
introduce additional costs that may marginalize the advantages
obtained. In particular, the management of technologies such
as blockchain, has to be carefully planned to avoid incurring in
unexpected pitfalls. In this article, we presented a design where
most of the management activities were automated through
the introduction of decentralized control implemented in smart
contracts, and the proof-of-concept implementation presented
showed that it is possible to provide an open system with a
high level of transparency without public disclosure of all the
sensitive data pertaining to a financial transaction. Furthermore,
our implementation showed that the resilience to tampering
provided by a public blockchain allowed building a very reliable,
evidence-based reputation system that can be used to mitigate
the risks connected to having to deal with unknown parties.

Finally, as the security analysis that we performed clearly
showed, our solution is capable of preventing most practical
cases of frauds and, by providing better guarantees, it allows
managing the system with lower expenditures for the Insurance
that is still needed to protect the involved parties from the
residual fraud cases. In future work, we plan to analyze the im-
plemented Invoice financing contract for security vulnerabilities
using tools such as Oyente [18] and Securify [19], develop a web
UI to interact with the smart contract, investigate the possibility
to replace the transporter by an IoT device fixed in the truck to
update the shipping status.

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 31,2022 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

1098 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 67, NO. 4, NOVEMBER 2020

REFERENCES

[1] H. Lycklama à Nijeholt, J. Oudejans, and Z. Erkin, “Decreg: A framework
for preventing double-financing using blockchain technology,” in Proc.
ACM Workshop Blockchain, Cryptocurrencies Contracts, 2017, pp. 29–34.
[Online]. Available: http://doi.acm.org/10.1145/3055518.3055529

[2] B. Ettore, M. Fabio, N. N. Chan, and S. Pierantonia, “Blockchain-based
invoice factoring: From business requirements to commitments,” in Proc.
DLT@ ITASEC, 2019, pp. 17–31.

[3] H. R. Hasan and K. Salah, “Blockchain-based proof of delivery of phys-
ical assets with single and multiple transporters,” IEEE Access, vol. 6,
pp. 46 781–46 793, 2018.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[5] M. Guerar, L. Verderame, A. Merlo, and M. Migliardi, “Blockchain-based
risk mitigation for invoice financing,” in Proc. 23rd Int. Database Appl.
Eng. Symp., 2019, pp. 20:1–20:6. [Online]. Available: http://doi.acm.org/
10.1145/3331076.3331093

[6] J. Benet, “IPFS—Content addressed, versioned, P2P file system,”
arXiv:1407.3561, 2014. [Online]. Available: http://arxiv.org/abs/1407.
3561

[7] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger eip-150 revision (759dccd - 2017-08-07),” 2017, Accessed: 2018-
01-03. [Online]. Available: https://ethereum.github.io/yellowpaper/paper.
pdf

[8] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis,
“Madmax: Surviving out-of-gas conditions in ethereum smart contracts,”
Proc. ACM Program. Lang., vol. 2, pp. 116:1–116:27, Oct. 2018. [Online].
Available: http://doi.acm.org/10.1145/3276486

[9] E. Hofmann, U. M. Strewe, and N. Bosia, Discussion—How Does the
Full Potential of Blockchain Technology in Supply Chain Finance Look
Like? Cham, Switzerland: Springer, 2018, pp. 77–87. [Online]. Available:
https://doi.org/10.1007/978-3-319-62371-9_6

[10] B. Nicoletti, Fintech and Procurement Finance 4.0. Cham, Switzerland:
Springer, 2018, pp. 155–248. [Online]. Available: https://doi.org/10.1007/
978-3-030-02140-5_6

[11] Y. Omran, M. Henke, R. Heines, and E. Hofmann, “Blockchain-driven
supply chain finance: Towards a conceptual framework from a buyer per-
spective,” in Proc. IPSERA, Budapest, Balatonfüred, Apr. 2017, pp. 1–15.
[Online]. Available: https://www.alexandria.unisg.ch/251095/

[12] A. Bogucharskov, I. Pokamestov, K. Adamova, and Z. Tropina, “Adoption
of blockchain technology in trade finance process,” J. Rev. Global Econ.,
vol. 7, no. 7, pp. 510–515, Nov. 2018. [Online]. Available: https://doi.org/
10.6000/1929-7092.2018.07.47

[13] EHDA, [Online]. Available: https://github.com/eulerhermesda/Smart_
Factor, 2018.

[14] A. Kayal, J. Yao, J. Redi, and E. C. Schnoeckel, Financing Small
& Medium Enterprises With Blockchain: An Exploratory Research
of Stakeholders Attitudes. Singapore: World Scientific, 2019, ch. 4,
pp. 65–83. [Online]. Available: https://www.worldscientific.com/doi/abs/
10.1142/9781786346391_0004

[15] H. Hyvärinen, M. Risius, and G. Friis, “A blockchain-based approach
towards overcoming financial fraud in public sector services,” Bus. Inf.
Syst. Eng., vol. 59, no. 6, pp. 441–456, Dec. 2017. [Online]. Available:
https://doi.org/10.1007/s12599-017-0502-4

[16] M. Chanson, A. Bogner, F. Wortmann, and E. Fleisch, “Blockchain as a
privacy enabler: An odometer fraud prevention system,” in Proc. ACM
Int. Joint Conf. Pervasive Ubiquitous Comput. Int. Symp. Wearable Com-
put., 2017, pp. 13–16. [Online]. Available: http://doi.acm.org/10.1145/
3123024.3123078

[17] P. Sarda, M. J. M. Chowdhury, A. Colman, M. A. Kabir, and J. Han,
“Blockchain for fraud prevention: A work-history fraud prevention sys-
tem,” in Proc. 17th IEEE Int. Conf. Trust, Secur. Privacy Comput. Com-
mun./12th Int. Conf. Big Data Sci. Eng., Aug. 2018, pp. 1858–1863.

[18] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proc. ACM SIGSAC Conf. Comput. Commun. Se-
cur., 2016, pp. 254–269. [Online]. Available: http://doi.acm.org/10.1145/
2976749.2978309

[19] P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. T. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proc. CoRR, vol. abs/1806.01143, 2018, pp. 67–82. [Online]. Available:
http://arxiv.org/abs/1806.01143

Meriem Guerar received the master’s degree in in-
formation systems and networks, in 2011, and the
Ph.D. degree in computer science, in 2017, both from
the University of Sciences and Technology of Oran,
Oran, Algeria.

She is currently a Postdoctoral Research Fellow
with the University of Genova, Genova, Italy. Her
main research interests include the areas of authenti-
cation, security and usability, blockchain and smart-
phone security.

Alessio Merlo received the M.Sc. and Ph.D. degrees
in computer science from the University of Genova,
Genova, Italy, in 2005 and 2010, respectively.

He is currently serving as a Senior Assistant Pro-
fessor of Computer Engineering at the University
of Genoa. His research activity mainly focuses on
Mobile and IoT Security. He coauthored more than 90
scientific papers spanning from Distributed Systems
to Cybersecurity research topics.

Mauro Migliardi received the M.S. degree in elec-
tronic engineering and the Ph.D. degree in computer
engineering from the University of Genoa, Genova,
Italy, in 1991 and 1995, respectively.

He is currently an Associate Professor of Cyberse-
curity with the University of Padua, Padua, Italy, and
an Adjunct Professor with the University of Genoa.
His main research interest include the engineering of
secure, energy aware mobile, distributed and IoT sys-
tems. He tutored more than 100 bachelor’s, master’s
and Ph.D. students at the Universities of Genoa (IT),

Padua (IT), and Emory (US). He has authored or coauthored more than 150
scientific papers.

Francesco Palmieri received the M.S. and Ph.D.
degrees in computer science from the University of
Salerno, Fisciano, Italy.

He is currently a Full Professor of Computer Sci-
ence with the University of Salerno. His research
interests include advanced networking protocols and
architectures and network security. He has been the
Director of the Networking Division, University of
Naples “Federico II” and contributed to the devel-
opment of the Internet in Italy as a Senior Member
of the Technical-Scientific Advisory Committee and

of the CSIRT of the Italian NREN GARR. He has authored more than 200
scientific papers, served as the Editor-in-Chief of an international journal and
has participated in the editorial board of many other highly-reputed ones.

Luca Verderame received the Ph.D. degree in elec-
tronic, information, robotics, and telecommunication
engineering from the University of Genoa, Genova,
Italy, in 2016, where he worked on mobile security.

He is currently working as a Postdoctoral Research
Fellow with the Computer Security Laboratory, and
he is also the CEO and Co-founder of Talos, a cyber-
security startup and university spin-off. His research
interests mainly cover information security applied,
in particular, to mobile and IoT environments.

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 31,2022 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

http://doi.acm.org/10.1145/3055518.3055529
http://www.bitcoin.org/bitcoin.pdf
http://doi.acm.org/10.1145/3331076.3331093
http://arxiv.org/abs/1407.3561
https://ethereum.github.io/yellowpaper/paper.pdf
http://doi.acm.org/10.1145/3276486
https://doi.org/10.1007/978-3-319-62371-9_6
https://doi.org/10.1007/978-3-030-02140-5_6
https://www.alexandria.unisg.ch/251095/
https://doi.org/10.6000/1929-7092.2018.07.47
https://github.com/eulerhermesda/Smart_Factor
https://www.worldscientific.com/doi/abs/10.1142/9781786346391_0004
https://doi.org/10.1007/s12599-017-0502-4
http://doi.acm.org/10.1145/3123024.3123078
http://doi.acm.org/10.1145/2976749.2978309
http://arxiv.org/abs/1806.01143

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

