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a b s t r a c t 

Smartphone devices are often assuming the role of edge systems in mobile IoT scenarios 

and the access to cloud-based services through smartphones, for transmitting multiple sen- 

sory data related to human activities, often implying some lawful evidence, has become in- 

creasingly common. Thus the need for protecting such transactions from abuses and frauds 

based on automation techniques is now a critical issue. The most widely adopted method 

to prevent unauthorized access and abuse of a service by malicious software automation 

is CAPTCHA. However, trying to strengthen CAPTCHA resilience to automated attacks has 

led to challenges that, while still being vulnerable, are both difficult and unpleasant for hu- 

mans. Hence, the strong need for a mechanism that is both secure and usable. In this paper, 

we present Invisible CAPPCHA, a mechanism that, leveraging trusted sensors embedded in 

a secure element located on a smartphone is capable of separating humans from computers 

in a way that is completely transparent to users. Furthermore, as no challenge is required, 

no additional time is needed and the user cannot fail it by mistake. Compared to the state of 

the art, our proposal is both secure and more user friendly, lending itself optimally to secure 

mobile cloud services. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Smartphones have become the main mean through which
users can access cloud services to go shopping, send mes-
sages, reserve tickets for events or seats at a restaurant, post
comments into a blog, etc. These devices are also assuming
the role of edge systems in mobile IoT scenarios, by collecting
and pre-processing the data generated by multiple sensors,
such as the ones used in healthcare monitoring or tracking/
surveillance services and conveying them towards the cloud
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fpalmieri@unisa.it (F. Palmieri). 

https://doi.org/10.1016/j.cose.2018.06.007 
0167-4048/© 2018 Elsevier Ltd. All rights reserved. 
s.unige.it (A. Merlo), mauro.migliardi@unipd.it (M. Migliardi),

for further and deeper analyses. However, it is known that
most of these services can be abused and are subject to auto-
mated attacks generated by computer programs called bots, or
exploited by automated applications often mimicking the hu-
man behavior for fraud or criminal purposes. As an example
of abuse, we may cite the recent trend in posting inflamma-
tory comments on social media to apply pressure on citizens
during election campaigns ( Ferrara et al., 2016 ). Furthermore,
malicious programs may also engage in damaging or manipu-
lative behaviors such as register thousands of free accounts at
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 time, vote automatically in online polls, click on ads to gen- 
rate revenue or to reduce the likelihood of being displayed 

o a real user, iterate through the entire space of passwords to 
nd the missing credential part, impersonate humans in their 
ctivities, by tricking remote workers’ monitoring or activity 
racking systems as well as creating the illusion of a physical 
resence in some place for creating a false alibi. 

In a Content Delivery Network (CDN) scenario where edge 
evices are adopted to dynamically cache contents on the ba- 
is of users’ requests, automated access to unpopular con- 
ents might degrade the system performance and, if mitigat- 
ng mechanisms are not implemented, the degradation might 
cale to complete saturation of bandwidth and storage space.
urthermore, as it is nowadays easier for a smartphone to be 
lways on than it is for a traditional PC, mobile botnets ( Eslahi 
t al., 2012; Xiang et al., 2011 ) are an emerging threat and are 
tarting to appear in the wild. In such a scenario, the capa- 
ility to throttle access to critical mobile cloud services con- 
rolling that the request has been activated by an actual hu- 

an user would mitigate the level of threat and reduce the 
otential of mobile cloud services abuse. While the machine- 
o-machine IoT has a different set of security priorities 
 Chasaki and Mansour, 2015 ), in the smartphone-empowered 

oT it becomes necessary to reliably demonstrate the human 

ature of a smartphone user before connecting to some online 
ervice or when transmitting to a cloud application some sen- 
ory data such as a GPS position or a real-time video as well 
s an ECG track. The easiest and most popular way used over 
ears by the web developers to tackle this issue is to allow ac- 
ess to these services only to users able to solve a CAPTCHA 

Completely Automated Public Turing test to tell Computers 
nd Humans Apart). The main purpose of CAPTCHAs is, as 
xplained by the name itself, to distinguish between humans 
nd computer programs; this goal is pursued by generating a 
est that is intended to be easy to solve for humans, yet hard 

o solve for computers. The most widely used CAPTCHA is 
eCAPTCHA ( von Ahn et al., 2008 ) by Google which has been 

dopted by many popular websites. 
Over the years, reCAPTCHA has leveraged text-, image- or 

udio-based challenges to verify the presence of a human 

efore allowing access to online services. The original re- 
APTCHA challenge asked users to recognize a distorted text 

n an image form which is known to be difficult for computer 
ision systems but easy for humans’ eyes. However, the in- 
reasing sophistication of computers and artificial vision sys- 
ems forced reCAPTCHA’s challenges to become more com- 
licated by adding noise and distortion aimed at making it 
arder to break. Nevertheless, it has been solved by automated 

ystems with high level of accuracy, e.g., Cruz-Perez et al.
2012) , Goodfellow et al. (2013) , Starostenko et al. (2015) . In ad-
ition, the introduction of heavy noise and distortion makes 
he challenge, especially on small screens such as the ones of 
martphones, hard for humans to decipher as well. In 2014,
oogle began to replace the reCAPTCHA system with a user- 

riendly alternative called No CAPTCHA ReCAPTCHA ( Google 
nc., 2018c ). This version requires simply the user to click in 

I’m not a robot” widget and through an advanced risk anal- 
sis software that relies on behavioral cues, such as where 
sers click, how long they linger over a checkbox, their typing 
adence and other variables that Google is keeping secret, tries 
o determine which behaviors are human-like and which are 
oo robotic. If the system classifies the user as human, then 

t gives him access. However, when the risk analysis engine 
annot confidently predict whether a user is a human or not,
t falls back to prompting the user to solve a reCAPTCHA chal- 
enge. Similar to No CAPTCHA ReCAPTCHA, the latest version,
he Invisible reCAPTCHA ( Google Inc., 2018b ) employs an ad- 
anced risk analysis software to determine if a visitor is a hu- 
an or not but without any direct involvement of the users 

hemselves. In this version, the users are not required to click 
n “I’m not a robot” widget unlike the previous one. 

To overcome the limitations of CAPTCHAs, in a past work 
e have introduced the concept of Completely Automated 

ublic Physical test to tell Computer and Humans Apart (CAP- 
CHA) ( Guerar et al., 2017, 2015 ), which, in order to spot the
resence of automations, leverages the physical nature of hu- 
an subjects instead of requiring them to tackle a complex 

ognitive task. In doing this, CAPPCHA asks the user to tilt the 
martphone to a specific degree to be recognized as a human.
APPCHA is designed in such a way that users cannot make 
istakes and there is no additional cognitive burden places 

nto them; yet, just like traditional CAPTCHAS, it introduces 
 specific additional step in the chain of tasks that lead to the
ser’s goal. 

Thus, to further reduce the perceivable impact on end-user,
hile guaranteeing the same level of reliability in identifying 

he presence of a human performing an operation, we intro- 
uce a new version of CAPPCHA, Invisible CAPPCHA, whose 
oal is to be fully transparent to the user without requiring 
ny additional task or challenge to prove that he/she is hu- 
an. 
In conceiving such idea, we noticed that almost all the 

nline services that require protection against automation 

buses require user’s input (e.g., fill a form, write a com- 
ent, tap on a button, perform login/ sign up, etc.). While 

n computers the user’s input is limited to the keyboard 

nd mouse, the user’s input on smartphones leverages the 
ouch paradigm and makes heavy use of tapping gestures; 
s a consequence, the user’s tap on smartphone is a physi- 
al interaction that is naturally used to fill forms, write com- 
ents, download an application, acknowledge a message etc.

his interaction generates a micro-movement of the device 
hat can be easily detected and measured by sensors such as 
he accelerometer that are universally available on modern 

martphones. 
Thus, instead of asking the user to perform an additional 

otion task (e.g., tilting the smartphone) to authorize access 
o the requesting application, Invisible CAPPCHA leverages the 

icro-movements of the device which are generated naturally 
y the user’s interaction with the touch-screen, more in de- 
ails the taps. These micro-movements need to be measured 

y a trusted sensor to prevent sensor data manipulation by 
ny malware component. As all the cloud-based services that 
eed confirmation that they are dealing with human requires 
ser’s input, Invisible CAPPCHA can be used as an effective 
nd secure way to prevent automated programs from abus- 
ng cloud services from mobile devices; furthermore, this re- 
ult can be achieved without posing any additional burden 

n the user, mainly in services that require periodic trans- 
ission of sensory data, and thus having an extreme level of 
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usability. Such proposal, allowing smartphones to assume the
role of reliable edge gateways in human-centric IoT/cyber-
physical applications, has been carefully assessed from the
functional point of view in order to provide a proof of con-
cept for all the involved ideas and mechanisms. The results
demonstrated the effectiveness of the whole approach and ar-
chitecture, and its real applicability in both present and future
devices. 

2. Backgrounds and related literature 

2.1. Besides CAPTCHAs 

The most widely-deployed form of CAPTCHA is text based,
where distorted texts are shown as CAPTCHA images. How-
ever, in addition to the usability issue, research has shown that
today’s Artificial Intelligence technology has become sophisti-
cated enough to solve the hardest challenges with 99.8% accu-
racy, e.g., Goodfellow et al. (2013) . To address this issue, Google
introduced the aforementioned “No CAPTCHA reCAPTCHA”
system, based on an advanced risk analysis engine to con-
sider how users interact with CAPTCHA verifications. If the
risk analysis engine determines that the user is human, the
user is only required to tick the “I’m not a robot” checkbox
and be verified without needing to solve a CAPTCHA. Other-
wise, the user will be presented with an image-based chal-
lenge or a traditional text-based CAPTCHA to verify the hu-
man nature of the user. However, Sivakorn et al. (2016) show
how Google tracking cookies can be used to fool the risk anal-
ysis system into thinking that a program was a human, and
to check the “I’m not a robot” box. In addition, in Al-Fannah
(2017) , authors claimed that a CAPTCHA challenge will always
be required if the Google web cookies are deleted, an incognito
web browser session is used, or JavaScript is disabled. Hence,
if these actions are performed by a malware or by the legiti-
mate user, the main motivation of using “No CAPTCHA” (i.e.,
optimize the user experience by allowing them in many cases
to skip the CAPTCHA tests entirely) will be ineffective. Re-
cently, Google improved this mechanism and made it entirely
invisible. The new “Invisible reCAPTCHA” service ( Google Inc.,
2018b ) is based on the same technology as the “No CAPTCHA
reCAPTCHA”, but it removes the check-box step, while suspi-
cious users and bots will still have to deal with reCAPTCHA’s
various challenges. 

2.2. CAPTCHA strengthened authentication and its 
alternatives 

In the literature, CAPTCHA has been also used to improve
the security of user authentication methods. For instance,
Pinkas and Sander (2002) proposed to combine the password
with CAPTCHA to counter online dictionary attacks. In Gao
and Liu (2009) , Wang et al. (2010) , authors suggested to use
CAPTCHA in graphical password schemes to resist spyware
attacks. Yeh et al. (2013) introduced a mobile user authenti-
cation system in cloud environments that uses CAPTCHA to
protect cloud servers against malicious registrations and lo-
gins. Pequegnot et al. (2011) suggested to use CAPTCHA to
improve the security of PIN codes on mobile devices against
automated attacks. Recently, Althamary and El-Alfy (2017)
proposed a CAPTCHA based authentication method in cloud
environments to strengthen weak passwords against differ-
ent attacks including short-password attack, dictionary at-
tack, keyloggers, phishing and social engineering. However,
the CAPTCHA schemes used in these authentication meth-
ods are similar to existing commercial text-based CAPTCHAs
and all of them have been broken with high percentages of ac-
curacy, e.g., Chandavale et al. (2009) , Goodfellow et al. (2013) ,
Moy et al. (2004) , Yan and El Ahmad (2008) and Korakakis et al.
(2014) . Besides security issues, it is common knowledge that
visual CAPTCHA such as the text-based schemes do not prop-
erly fit the smartphone form factor ( Reynaga and Chiasson,
2013 ). These facts motivate many researchers to design new
ways for preventing automated attacks suitable for mobile de-
vices. 

Guerar et al. introduced CAPPCHA ( Guerar et al., 2015 ), a
new dependable way to determine whether a user is human.
The CAPPCHA challenge requires the user to tilt the smart-
phone to a specific degree displayed on the screen to be rec-
ognized as a human. The idea behind this, is that malware
can affect the behavior and the security of the smartphone
in several way (e.g., battery ( Merlo et al., 2014 )) but it cannot
physically move the device. The movement detection of the
smartphone is measured by an accelerometer sensor embed-
ded in the secure element to prevent sensor data manipu-
lation by the malware. Beside acting as standard CAPTCHA,
CAPPCHA can be used to enhance the security of PIN au-
thentication against mobile malware. In Guerar et al. (2017) ,
authors presented an extended usability study of CAPPCHA
based on 200 volunteers. Their experiment results show that
CAPPCHA is easy to understand and use, and it shows a high
acceptance rate by the users. Shrestha et al. (2013) proposed
to use the hand waving gesture to prevent unauthorized ac-
cess to sensitive services. Their system uses the light and the
accelerometer sensor for detecting the gesture instead of the
proximity sensor. However, authors assume that the OS ker-
nel is completely immune to any tampering and the sensor
data cannot be manipulated by the malware. Guerar et al.
presented BrightPass ( Guerar et al., 2016 ), an authentication
mechanism that leverages the screen brightness as a commu-
nication channel that is inaccessible to the mobile malware
for improving the security in mobile social network access.
For each authentication session, BrightPass displays an alter-
nating circle’s brightness on the phone screen to tell the user
when to input the correct PIN digit and when to input a fake
one. This way, it prevents malware from successfully replay-
ing the user’s PIN, thereby disallowing the possibility to gain
unwanted access and/or perform specific actions without the
user’s awareness. It also ensures a short authentication time
(i.e., 6.73 s) and low error rates (i.e., 1.81%). All of these solu-
tions, however, require a specific additional activity to be per-
formed by the user. 

2.3. Smartphone built-in sensors and security 

The current generation smartphones are equipped with a
multitude of sensors in the pursue of making them even
smarter. These sensors, on the other hand, have been
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xploited both for improving user’s security (e.g., extract 
iometric features or gesture recognition for authenticating 
he user, etc) and for compromising it (e.g., steal user’s cre- 
ential, violate his privacy, etc.). 

Conti et al. (2011) presented a transparent method that 
ses data measured by the accelerometer and orientation sen- 
or during call placing/answering as a biometric measure to 
uthenticate the user and thus, prevent unauthorized users to 
erform this action. Buriro et al. (2017) proposed motion based 

 touch-typing biometrics method to improve the security of 
n 8-digit PIN/password used for mobile banking applications.
heir method authenticates the legitimate user based on the 

iming differences in the entered keystrokes and the phone- 
ovements during the PIN/password entry process which is 
easured from different 3-dimensional sensors (i.e the ac- 

elerometer, the orientation, the gravity sensor, the magne- 
ometer and the gyroscope). De Luca et al. (2012) introduced 

 transparent authentication method to enhance the secu- 
ity of the Android Pattern Lock. While performing the wipe 
esture to draw the pattern, some biometric attributes are 
ollected, including XY-coordinates, pressure, size, time and 

peed of the touch to validate the entered pattern. Thus, the 
martphone is unlocked only if the user draws the correct pat- 
ern and the way it has been drawn matches the stored at- 
ributes. In contrast to these methods that use motion-sensor 
eadings to extract unique behavioral characteristics of indi- 
iduals to distinguish between a legitimate user and an im- 
ostor, our proposed mechanism, Invisible CAPPCHA, uses 
otion sensor readings to distinguish between humans and 

alware. 
Much work has been dedicated to showing how smart- 

hone sensors can be used as a side channel to infer user’s 
eystrokes typed on the touchscreen. The idea behind this 
ttack is that the device’s micro-movements caused by the 
ser’s tap on the touchscreen are quite different depending 
n tap location. TouchLogger by Cai and Chen (2011) is the first 
ork that suggests to use motion sensors as a side channel to 

nfer keys typed on a number-only soft keyboard on a smart- 
hone. Xu et al., introduce TapLogger ( Xu et al., 2012 ), a trojan
pplication that uses the data collected by the accelerometer 
o detect the occurrence of taps and data from the orientation 

ensor to infer the positions of these taps. This Trojan is able 
o stealthily log the screen lock password and the numbers 
ntered during a phone call, such as credit card and PIN num- 
ers. Miluzzo et al. introduce TapPrints ( Miluzzo et al., 2012 ),
 framework that infers the tap information on the soft key- 
oard of both smartphones and tablets based on accelerome- 
er and gyroscope readings. Owusu et al. (2012) , show that the 
ata acquired from the accelerometer is sufficient to infer en- 
ire sequences of the text typed on the soft keyboard. Similarly,
viv et al. (2012) show that the accelerometer readings can be 
sed as a side channel to infer both user’s PINs and lock pat- 
erns. Recently, Mehrnezhad et al. (2016) demonstrated how 

avaScript access to the accelerometer and gyroscope readings 
an be used as a side channel to infer user’s PINs. Similarly to 
he above-mentioned works, Invisible CAPPCHA leverages the 

icro-movement of the device caused by the user’s tap on the 
ouchscreen. However, our goal is to improve security instead 

f compromising it. 
. The invisible CAPPCHA concept 

e already discussed how the most common method to pre- 
ent automated access to remote cloud applications, web re- 
ources or sensitive mobile services is to perform some kind 

f test to check that a user is a human. For this purpose, Invis-
ble CAPPCHA leverages the micro-movements of the device 

hich are generated naturally by the user’s interaction with 

he touch-screen. We define micro-movement a movement 
hat, while being usually too small to be noticed by the hu- 

an user and being not a desired effect of the user action, can
till be measured by monitoring the acceleration of the device 
long the direction perpendicular to the touchscreen in order 
o detect both gentle and strong taps. Strong taps present vari- 
tion peaks with more amplitude than the gentle taps. Similar 
o CAPPCHA ( Guerar et al., 2017, 2015 ), the rationale behind our
ork is that malware cannot physically move the device. How- 

ver, Invisible CAPPCHA leverages that idea in a fully trans- 
arent way that requires no additional task or challenge to be 
erformed or tackled by the user; this is a major difference 
rom CAPPCHA ( Guerar et al., 2017, 2015 ), which asks the user
o tilt the device to a specific degree as a challenge. As the
hone movement caused by user’s finger tap is small, com- 
ared to tilting the smartphone action, we conducted several 
xperiments to prove that the micro-movements generated by 
he user tapping actions can be identified with a high level of 
ccuracy and, at the same time, that such activity cannot be 
imulated by malware leveraging unsecured hardware such as 
he smartphone’s vibration motor. In addition, in order to pre- 
ent sensor data manipulation by malware applications, the 
icro-movements of the device need to be measured by a mo- 

ion sensor that is embedded in the secure element which is 
 tamper-resistant device. Fortunately, a SIM card equipped 

ith a motion sensor already exists in the market under the 
ame SIMSense ( Oberthur Technologies, 2010 ). Vivo was the 
rst mobile network operator that introduced SIMSense to its 
ustomers in Brazil ( Oberthur Technologies, 2010 ). Such SIM 

ard will allow Invisible CAPPCHA to be implemented in any 
xisting devices. When the user fills a form or provides other 
nformation to a cloud application/service through a browser 
r a web service interface, the secure element checks if during 
he tap gesture events a tap micro-movements pattern is rec- 
gnized in sensor data measured by the embedded accelerom- 
ter, typically used for measuring movements and orienta- 
ion. If this is the case, then the input is considered as a valid,
uman-generated one, otherwise the input is considered as 
alicious one injected by the malware (See Fig. 1 ). 
In any case, a message accompanying the sending of some 

ata, that has to be verified as human-generated, to the server,
s used for notifying the results of the aforementioned check,
o that the server is able to differentiate its behavior according 
o the genuine nature of human-submitted data or its gener- 
tion by a malicious automation (malware). For example, an 

TTP transaction based on the POST method may integrate 
he invisible CAPPCHA mechanism, by conveying the result 

essage together with the other transmitted data. The in- 
egrity of such message strictly depends on the use of the se- 
ure element for managing the whole mechanism. 
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Fig. 1 – Invisible CAPPCHA mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the secure element can be equipped with a digi-
tal certificate, we can strongly guarantee the integrity of the
sent message as well as its authenticity, by associating it
with the identity of the mobile terminal that can be strongly
checked and verified. More precisely, the secure element signs
the results of the verification by using ECDSA, standardized
in FIPS 186–4 ( U.S. Department of Commerce/National Insti-
tute of Standards and Technology, 2013 ), and sends it to the
cloud application (server), so that any malicious tampering of
the message will be immediately detectable. Such choice for
the signature algorithm is motivated by the fact that ECDSA
provides the same security degree as the more traditional
RSA but by adopting much smaller keys. In our specific ap-
plication, reducing the key size brings significant advantages,
starting from the fact that the use of smaller keys implies
faster algorithms for signature generation since smaller num-
bers are involved in mathematical operations. Reducing the
size of public keys also means using smaller certificates and
hence less data has to be exchanged when establishing se-
cure connections. This has the immediate effect of contain-
ing the connection setup times and the load latency on web
accesses. Furthermore, breaking an ECDSA key implies ef-
ficiently solving the Elliptic Curve Discrete Logarithm Prob-
lem on which the whole mathematical community has not
made major progresses since it was introduced around 1985
by Koblitz (1987) and Miller (1985) . For these reasons, ECDSA is
extensively used in the smartphone arena and in particular on
the Apple ecosystem, both for signing messages in iMessage
and syncing relies on iCloud keychain. 

In our security model, the Invisible CAPPCHA mechanism
is used also to enhance the security of Password-based au-
thentication methods (i.e. used to protect access to the secure
element), yet this is not necessary in smartphones equipped
with the Trusted Execution Environment (TEE) ( Global Plat-
form’s White Paper, 2011 ). 

3.1. Tap detection 

The accelerometer is able to sense any acceleration event in-
teresting the smartphone over the three axes x, y and z whose
directions are predefined as shown in Fig. 2 . The raw data that
can be obtained from the accelerometer report the accelera-
tion measured on each axis in g-force units, represented as a
time series of vectors: 

{ A i } n 1=1 = { (a x 1 , a 
y 
1 , a 

z 
1 ) , . . . , (a 

x 
n , a 

y 
n , a 

z 
n ) } (1)

so that, ideally, an accelerometer embedded within a device ly-
ing on a perfectly flat surface should return an infinite series
of values { (0 , 0 , ±1) , . . . } . Clearly, since accelerometer devices
are not perfectly accurate, this is not true and the values ob-
served will not be constant, but rather change on each obser-
vation due to the effect of noise; however, as our experiments
clearly show, such noise is never critical to the detection of
taps, hence, even in the real case of not ideal accelerometers,
the detection of taps is very accurate. 

Tap detection by the accelerometer is not new, and many
researchers have suggested algorithms to detect tap for dif-
ferent purposes. For instance, Heo and Lee (2011) suggested
an algorithm that utilizes built-in accelerometer data to dis-
tinguish between gentle and strong taps and they had proved
its feasibility in various conditions (i.e., single-handed, two-
handed, immersive and walking condition). The tap classifi-
cation is done by calculating the sum of the absolute values
of all accelerometer samples within a time window around
the touch event and compare it with a predefined thresh-
old. Davarci et al. (2017) suggested to use accelerometer data
to detect tap as well as determining if it belongs to a child
or an adult. Xu et al. (2012) developed a trojan application
that detects the occurrences of tap events by monitoring the
motion change caused by the external force applied on the
smartphone. Beside academic work, there are currently in
the market accelerometers by NXP Tuck (2010) that integrate
single/double and directional tap detection algorithms. The
embedded algorithms for single and double tap analyze the
acceleration patterns of finger taps along the z-axis by com-
paring thresholds and timing conditions. Similarly to these
embedded algorithms, we also analyse the acceleration read-
ings along the z-axis. 

In order to implement Invisible CAPPCHA any tap detection
algorithm from the literature can be used e.g.,Tuck (2010) . In
fact, in this paper we developed a simple algorithm which is



260 c o m p u t e r s  &  s e c u r i t y  7 8  ( 2 0 1 8 )  2 5 5 – 2 6 6  

Fig. 2 – Accelerometer axes layout ( Apple, 2016 ). 
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ased on two tap acceleration pattern features but we did not 
ested in different conditions because our main goal here is 
ot to prove the feasibility of tap detection using accelerom- 
ter data but instead to prove that the user’s tap accelera- 
ion pattern is distinguishable from patterns generated using 
nsecured hardware such as the vibration motor whose API 
an be exploited by malware. Therefore, the micro-movement 
aused by user’s tap can be used to distinguish between hu- 
an and malware. To this end, in following section we com- 

are between tap and vibration patterns to show the differ- 
nce. 

.2. Distinguishing between tap and vibration patterns 

he vibration motor available in any smartphone could be 
xploited by malicious applications to produce a micro- 
ovement of the device within an automation. Hence we 

eed to show the difference between the micro-movement 
aused by real taps and those caused by vibration. For this rea- 
on, we compared between the accelerometer data collected 

uring the user’s tap and vibration from different smart- 
hones, namely HTC DESIRE, GALAXY S ADVANCE, LG G4,
PPO F1 and ONEPLUS 5T. These devices represent a signifi- 
ant timespan as they are smartphones commercialized re- 
pectively in 2010, 2012, 2015, 2016 and 2017. Furthermore,
hey have also different types of vibrating motors. 

In order to show the tap effect on acceleration pattern, we 
eveloped an Android application with a personalized virtual 
eypad. While the application is running, the accelerometer 
eadings in x, y and z directions and tap event information 

re stored in the internal memory of the smartphone. The tap 

vents are identified by timestamps of the received event Mo- 
ion.Event.ACTION_DOWN triggered when the user taps his fin- 
er on the touchscreen and the event Motion.Event.ACTION_UP 
riggered when the user lifts up his finger. When gathering 
ensor data from the smartphone’s accelerometer, it is funda- 
ental to carefully choose a sampling frequency, whose value 

s able to significantly impact the accuracy of the resulting 
ata. Clearly the best choice has to be experimentally deter- 
ined through multiple trials. We used a sampling frequency 

ENSOR_DELAY_GAME in LG G4 and ONEPLUS 5T and SEN- 
OR_DELAY_FASTEST in the other devices ( Google Inc., 2018a ),
hich is the fastest rate at which sensor data is provided. In 

he experiments, we consider a scenario in which the user 
olds smartphone by one hand and tap on the touchscreen 

ith the index finger of the other hand. We collected sensor 
ata of 200 taps from the above-mentioned smartphones and 

epeated the experiments with several users characterized by 
ifferent sex and age. As shown in Fig. 3 , the effect of a fin-
er tap on acceleration change pattern is significantly higher 
nd similar on the Z -axis in all tested devices. It goes down
rst, then jump up dramatically then go down again to finally 
ipple and settle to the beginning position. 

On the other hand, we developed another application that 
alls the vibration API when a touch event is simulated to 
how the vibration effect on acceleration pattern. We sim- 
lated 20 touch events and thus we collected accelerome- 
er data of 20 vibrations from each smartphone. As shown 

n Fig. 4 , the effect of smartphone built-in vibration motor is 
ignificantly higher on one or two axis and it differs from a 
evice to other except ONEPLUS 5T. For example, the vibra- 
ion motor in GALAXY S ADVANCE produces vibration only on 

he Z axis, the HTC DESIRE in the YZ axis while the OPPO F1
nd LG G4 produces vibration in the XY axis. Regarding ONE- 
LUS 5T, during the test we noticed that its vibration is weak 
n comparison to the other devices and this explains why 
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Fig. 3 – Acceleration readings during user’s input in HTC DESIRE, GALAXY S ADVANCE, OPPO F1, LG G4, ONEPLUS 5T, 
respectively. 

Fig. 4 – The effect of smartphone built-in vibration motor on acceleration change in GALAXY S ADVANCE, HTC DESIRE, OPPO 

F1, LG G4 and ONEPLUS 5T. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

there is not a significant change on acceleration pattern in
any axes. 

To distinguish the micro-movement caused by real taps
and those caused by vibration, we developed a simple algo-
rithm that relies on two acceleration pattern tap features,
a negative peak and positive peak which are detected by
comparing acceleration readings on Z axis against predefined
thresholds. The results of the implementation of this algo-
rithm on the collected data from the two above described ap-
plications are illustrated in Fig. 5 . The red line on the bottom
of each section, shows that the algorithm detected all the real
user taps (on the left part), while it remained flat on all sim-
ulated taps combined with vibration (on the right side). Thus,
the movement caused by a human user tap can be accurately
differentiated by our algorithm from the ones generated by vi-
bration in all tested smartphones. This confirm that the user’s
tap cannot be simulated by malware using the vibration mo-
tors and thus it can be used to distinguish between human
and malware. 

It is important to notice that in this experiment, the accel-
eration data were measured by the smartphone built-in sen-
sor because the goal of this section is only to show the dif-
ference between the measured data when the human tap his
finger on the touch-screen and the smartphone vibration.
Thus, which sensor has been used to measure these data is
not important. However, this does not remove the require-
ment of using a trusted sensor to implement the Invisible CAP-
PCHA scheme in the real world. 

As previously mentioned, Invisible CAPPCHA can be used
by any web/cloud application that needs to be guaranteed that
it’s dealing with human user and input (e.g., a tap). In order to
implement Invisible CAPPCHA, a secure element embedded
with motion sensor such as SIMSense ( Oberthur Technolo-
gies, 2010 ) is required to ensure the security of the sensory
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Fig. 5 – Comparison between tap and vibration acceleration patterns along the Z axis. 
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ata, while the integrated tap detection algorithm analyzes 
hese data to distinguish between humans and malware. As 
he SIMsense secure element is available as a SIM card, it can 

e used inside any mobile device without requiring any hard- 
are change. Furthermore, the communication between the 
eb/cloud applications and the secure element is carried out 
ia the web API defined by ( GlobalPlatform, 2016 ). 

. Threat model 

e assume that Invisible CAPPCHA uses the web API defined 

y GlobalPlatform (2016) to access the secure element. Al- 
hough the secure element may bring additional security to 
 cloud application/service, it is not, in itself, capable to fully 
nsure that the application is secure. In particular, we may 
dentify threats in the following categories: 

• Communication 

• Access 
• Sensitive Data Exposure 

In the first category, several security threats may affect the 
roposed scheme, starting from a malicious entity generating 
nd injecting forged verifications, or tampering with transmit- 
ed verification messages or finally, collecting successful le- 
itimate verification and re-playing them associated to auto- 
atically generated transactions. In fact, the communication 

etween the cloud application/service and the secure element 
s not automatically secured and thus, a security mechanism 

uch as encryption has to be implemented to ensure the in- 
egrity and authenticity of the exchanged messages. In our se- 
urity model, the secure element signs the result of Invisible 
APPCHA verification before sending it to the cloud applica- 
ion/service at the server-side. However, this by itself is not 
ufficient to prevent a replay attack. 

In the second category, the access to the application stored 

n the secure element usually requires authentication of the 
ff-card communicating party, for instance by asking user to 
resent a PIN/password to unlock access. Thus, if malware 
as sufficient privileges to access smart card services, it can 

mpersonate a legitimate application and try to brute-force 
his password. However, as in general only three attempts are 
llowed before the secure element is blocked, a brute force 
ttack is not possible. Nonetheless, more than three invalid 

IN/password values represent a denial of service attack as 
ny further interaction with the secure element will be denied.
he malware could also steal the user’s password through side 
hannel attack ( Mehrnezhad et al., 2016 ) and replay it to gain
nauthorized access. 

Finally, it is important to notice that for our threat model 
he trustworthiness of the server (the service provider) is ir- 
elevant. Invisible CAPPCHA only provides the information 

bout the fact that the interacting entity at the device side is 
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human or not, no sensitive data are provided to the server side
as the interpretation of the accelerometer data is completely
performed inside the secure element. 

5. Security analysis 

In this section, we discuss the security of our model against
the aforementioned threats and other known attacks. 

5.1. Replay attack (Communication to the Server) 

In our security model, the secure element signs the result of an
Invisible CAPPCHA verification before sending it to the cloud
application/service (server). 

The risk of replay attacks, where the malware can steal the
signed message of valid input performed by the human and
replay this message to gain unauthorized access to the pro-
tected service, has to be addressed by sending a signed unique
value, i.e., a nonce, with the signed result of the Invisible CAP-
PCHA verification. 

In detail, according to the well-known ECDSA scheme
( Johnson et al., 2001 ), after choosing an elliptic curve group of
order q with a base point (generator) G laying on the curve, the
pair ( m, n ) constituted by the verification result message m and
a nonce n is hashed by using SHA-256 to a bitstring of length
no more than the bit length of q , which is then transformed to
an integer e : 

e = l e ft most bit s (| q | , SHA 256(m || n )) (2)

where “||” represents the bitwise concatenation operator and
| q | is the bit-length of the group order q . Then, a cryptographi-
cally secure pseudorandom integer k ranging from 1 to q −1 is
selected to determine the point (x 1 , y 1 ) = k ·G on the curve, the
x 1 is transformed to an integer to compute r = x 1 mod q . The
signature of the pair ( m, n ) is the pair ( r, s ) of integers modulo
q , where s = k −1 (e + d · r ) mod q where d is the private key used
for signing. Another elliptic curve point Q = d · G will be the
public key available to the server for verification, performed
through the same secure hash algorithm as in the signature
process, so that the message digest signed by the authentica-
tor is computed which, together with the public key Q and the
digital signature components r and s , leads to the result. Fi-
nally, the signed message sent to the server will be composed
by the 4-tuple ( m, n, r, s ) where the last two elements will be
used for signature verification. 

5.2. Reverse engineering attack 

We assume that the JavaScript code of cloud applica-
tion/service running in the browser is obfuscated to transform
the code into a new representation that is harder to under-
stand, copy, re-use and modify without authorization. How-
ever, successful de-obfuscation could be achieved in practice.
In our security model, even if an attacker could de-obfuscate
the code and remove or change the code related to the com-
munication with the secure element to validate Invisible CAP-
PCHA, it will not succeed in the attack as the server allows
access to the protected service only if the message that indi-
cates that the input has been performed by a human is digi-
tally signed by the secure element. Thus, the attacker cannot
bypass Invisible CAPPCHA using reverse engineering. 

5.3. Human-solver relay attacks 

Human-solver relay attacks consist of relaying CAPTCHA chal-
lenges to remote human-solvers to bypass the security pro-
vided by CAPTCHAs. As CAPTCHA aims to distinguish be-
tween human and malware, it does not make difference
between the legitimate user and remote human-solver. This is
why this attack remains the most effective against the most,
if not all, existing CAPTCHAs. However, Invisible CAPPCHA is
transparent and does not require any additional task. There-
fore, there is not a challenge to send to the human solvers.
Thus, we argue that Invisible CAPPCHA ensures the security
against human solver attack compared with the traditional
CAPTCHAs. 

5.4. Brute force and password replay attacks (Access to 
the secure element) 

A brute force attack is an attempt to discover a password by
trying all possible combination of letters, numbers and sym-
bols until the password is found. In order to prevent ma-
licious application from discovering the password through
brute force, we suggest to use Invisible CAPPCHA to validate
any input before it is used as a password candidate. In the
case of a valid password typed by the human, the secure el-
ement provides access. Otherwise, the number of remaining
attempts is decremented. In this way, even if a malware man-
ages to guess the right password in the first attempt or steals
the password through a side-channel attack, e.g., Xu et al.
(2012) , Aviv et al. (2012) , Mehrnezhad et al. (2016) and Simon
and Anderson (2013) , it will not be able to gain access to the
secure element as Invisible CAPPCHA will stop it. This way,
Invisible CAPPCHA enhances the security of password against
brute force and replay attacks. 

5.5. Denial of service attack (Access to the secure element)

Usually a Secure Element allows three attempts before block-
ing the access. Thus, a malicious code can present multiple in-
valid passwords to block access to the Secure Element and en-
act a Denial of Service attack. Invisible CAPPCHA can be used
to mitigate this attack as it can prevent malware from sub-
mitting passwords to the secure element. Therefore, the Se-
cure Element can block the access to itself only if three invalid
passwords have been entered by an Invisible CAPPCHA cer-
tified human, while invalid password entered by a malicious
application will simply be blocked before being used. 

6. Conclusions 

CAPTCHAs are mainly used to prevent fraudsters from con-
ducting automated actions at a large scale and abuse of mo-
bile cloud services; however, the discerning factor adopted
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i.e., a cognitive task) makes CAPTCHAs very often inconve- 
ient and hard to solve even for human subjects. In this pa- 
er, we proposed Invisible CAPPCHA, a new transparent ver- 
ion of CAPPCHA that leverages the physical nature of humans 
nstead of hard cognitive tasks. Unlike the original CAPPCHA,
he novel version presented in this paper does not require any 
dditional step or task; in fact, it uses the micro-movements 
enerated naturally during the user’s input in webpages to 
rove that the user is human. The experimental results on five 
martphones from different generations and equipped with 

iverse hardware show that the acceleration changes during a 
ap event follows certain pattern that programs cannot mimic 
hrough vibration. This way, we demonstrated that the micro- 

ovement caused by user’s tap captured by a trusted sensor 
an be used to tell computers and humans apart. It is impor- 
ant to notice that when the smartphone is sitting on a hard 

urface such as a table, Invisible CAPPCHA has a low level of 
ccuracy in the detection of the tap event. For this reason,
hen the test starts, Invisible CAPPCHA checks if the smart- 
hone is in the user’s hand. Furthermore, as the main purpose 
f Invisible CAPPCHA is to prove that the current action is re- 
uested by a human user, to impose that the user holds the 
martphone in his hand does not represent a strong limita- 
ion; in fact, users usually leave their smartphone on tables or 
ther surfaces only when they do not need it. In future work,
e plan to develop an advanced tap detection algorithm ca- 
able of being effective in all common conditions of smart- 
hone’s use and test it with a higher number of participants.

n addition, we plan to test the effectiveness of Invisible CAP- 
CHA with different form factors such as tablets and smart 
atches. Finally, the feasibility to leverage Invisible CAPPCHA 

ailures to detect the presence of malware on the device and 

otify the user of such a problem will be studied. 
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